📄 spi_rcv_shift_reg.vhd
字号:
-- File: spi_rcv_shift_reg.vhd
--
-- Created: 9-6-00 ALS
-- SPI shift register that shifts data in on MISO. No data is shifted out.
-- This is an 8-bit register clocked on the outgoing SCK. The data input
-- on the MISO pin is first clocked by two registers - one on the rising edge
-- of SCK and one on the falling edge of SCK. The data selected to be input into the
-- shift register is determined by a control bit in the control register (RCV_CPOL).
-- When all bits have been shifted in, the data is loaded into the uC SPI Receive Data
-- register.
--
-- Revised: 9-11-00 ALS
-- Revised: 10-17-00 ALS
-- Revised: 12-12-02 JRH
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
entity spi_rcv_shift_reg is
port(
-- shift control and data
miso : in STD_LOGIC; -- Serial data in
shift_en : in STD_LOGIC; -- Active low shift enable
-- parallel data out
data_out : out STD_LOGIC_VECTOR (7 downto 0); -- Shifted data
rcv_load : out std_logic; -- load signal to uC register
-- rising edge and falling SCK edges
sck_re : in std_logic; -- rising edge of SCK
sck_fe : in std_logic; -- falling edge of SCK
-- uC configuration for receive clock polarity
rcv_cpol : in STD_LOGIC; -- receive clock polarity
cpol : in std_logic; -- spi clock polarity
ss_in_int : in STD_LOGIC; -- signal indicating another master
-- is on the bus
reset : in STD_LOGIC; -- reset
sclk : in STD_LOGIC -- clock
);
end spi_rcv_shift_reg;
architecture DEFINITION of spi_rcv_shift_reg is
--******************************** Constants ***********************
constant RESET_ACTIVE : std_logic := '0';
--******************************** Signals ***********************
signal data_int : STD_LOGIC_VECTOR (7 downto 0);
signal shift_in : STD_LOGIC; -- data to be shifted in
signal miso_neg : STD_LOGIC; -- data clocked on neg SCK
signal miso_pos : STD_LOGIC; -- data clocked on pos SCK
signal rcv_bitcnt_int : unsigned(2 downto 0); -- internal bit count
signal rcv_bitcnt : std_logic_vector(2 downto 0); -- bit count
begin
--******************************** SPI Receive Shift Register ***********************
-- This shift register is clocked on the SCK output from the CPLD
rcv_shift_reg: process(sclk, reset, ss_in_int)
begin
-- Clear output register
if (reset = RESET_ACTIVE or ss_in_int = '0') then
data_int <= (others => '0');
-- On rising edge of spi clock, shift in data
elsif sclk'event and sclk = '1' then
-- If shift enable is high
if shift_en = '0' then
-- Shift the data
data_int <= data_int(6 downto 0) & shift_in;
end if;
end if;
end process;
--******************************** MISO Input Registers ***********************
-- The MISO signal is clocked on both the rising and falling edges of SCK. The output
-- of both these registers is then multiplexed with the RCV_CPOL control bit choosing
-- which data is the valid data for the system. This data is then the input to the
-- shift register.
-- SCK rising edge register
inreg_pos: process (sclk, reset, ss_in_int)
begin
if reset = RESET_ACTIVE or ss_in_int = '0' then
miso_pos <= '0';
elsif sclk'event and sclk = '1' then
miso_pos <= miso;
end if;
end process;
-- SCK falling edge register
inreg_neg: process (sclk, reset, ss_in_int)
begin
if reset = RESET_ACTIVE or ss_in_int = '0' then
miso_neg <= '0';
elsif sclk'event and sclk = '0' then
miso_neg <= miso;
end if;
end process;
-- RCV_CPOL multiplexor to determine shift in data
miso_mux: process (miso_neg, miso_pos, rcv_cpol)
begin
if rcv_cpol = '1' then
shift_in <= miso_pos;
else
shift_in <= miso_neg;
end if;
end process;
--******************************** Parallel Data Out ***********************
data_out <= data_int(6 downto 0) & shift_in;
--******************************** Receive Bit Counter ***********************
-- Count bits loading into the SPI receive shift register based on SCK
-- assert RCV_LOAD when bit count is 0
RCV_BITCNT_PROC: process(sclk, reset, shift_en)
begin
if reset = RESET_ACTIVE or shift_en = '1' then
rcv_bitcnt_int <= (others => '0');
elsif sclk'event and sclk = '1' then
rcv_bitcnt_int <= rcv_bitcnt_int + 1;
end if;
end process;
rcv_bitcnt <= STD_LOGIC_VECTOR(rcv_bitcnt_int);
--******************************** Receive Load ***********************
-- If RCV_CPOL = '0', want to assert RCV_LOAD with falling edge of SCK
-- If RCV_CPOL = '1', want to assert RCV_LOAD with rising edge of SCK
-- only want RCV_LOAD to be 1 system clock pulse in width
rcv_load <= '1' when ( shift_en = '0' and
( (rcv_bitcnt="000" and cpol='0' and rcv_cpol='1' and sck_re='1')
or (rcv_bitcnt="000" and cpol='1' and rcv_cpol='1' and sck_re='1')
or (rcv_bitcnt="000" and cpol='0' and rcv_cpol='0' and sck_fe='1')
or (rcv_bitcnt="111" and cpol='1' and rcv_cpol='0' and sck_fe='1') )
)
else '0';
end DEFINITION;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -