📄 core1.v
字号:
/*===============================================================================================*/
//刘通更改自core_controller
//注释时间:2009.3.9
//模块输入:
/*-----------------------------------------------------------------------------
RHF_ONE_, 422第一路半满信号
RFE_ONE_, 422第一路空信号
RHF_TWO_, 422第二路半满信号
RFE_TWO_, 422第二路空信号
RHF_THREE_, 422第三路半满信号
RFE_THREE_, 422第三路空信号
RHF_FORE_, 422第四路半满信号
RFE_FORE_, 422第四路空信号
-----------------------------------------------------------------
RHF_232_, 232半满信号(本模块中暂时没用)
RFE_232_, 232空信号(本模块中暂时没用)
CLK,
=======================================================
read_bkfifo_start, 上端模块dma.v给的后端FIFO读信号
reset_, 复位信号
write_allow, 由后端FIFO引出的后端FIFO写允许信号,当后端FIFO存储空间大于等于256个时,
此信号被拉低,此时允许往里写数据。
----------------------------------------------------------*/
/*===============================================================================================*/
module core1(
RHF_ONE_, //422 channel one half full
RFE_ONE_, //422第一路fifo读空
RD_FIFO_ONE, //读422第一路fifo控制信号
RHF_TWO_, //422第一路fifo半满
RFE_TWO_, //422第二路fifo读空
RD_FIFO_TWO, //读422第二路fifo控制信号
RHF_THREE_, //422第二路fifo半满
RFE_THREE_,
RD_FIFO_THREE,
RHF_FORE_,
RFE_FORE_,
RD_FIFO_FORE,
RHF_232_,
RFE_232_,
RD_FIFO_232,
/////////////////////////////////////////////
CLK,
read_bkfifo_start,
reset_,
busy_flag,
////////////////////////////////////////////
write_allow,
write_bkfifo,
read_bkfifo,
//OE_,
///////////////////////////////////////////
//operate_state,
dma_finish_flag,//DMA结束标志,LA写入该标志,表示此次DMA结束,清零地址寄存器
//current_state,
//RAM_WRITE_ADDR_POINTER,//输出给PCI总线的地址计数器的数值
//RAM_READ_ADDR_POINTER,
//data_to_ram_en,//如果各路fifo输出给ram的信号有效,则此位=1;否则此位==0
//data_to_fifo_en,
RAM_ADDR,
RAM_OE_,
RAM_CE1_,
RAM_CE2,
RAM_BHE_,
RAM_BLE_,
RAM_WE_,
fifo_sel,
//read_state,
read_bkfifo_request,
RAM_READ_ADDR_POINTER,
RAM_WRITE_ADDR_POINTER);
input CLK;
input reset_;
input dma_finish_flag;
//422 and 232 FIFO控制和状态信号
input RHF_ONE_; //422第一路fifo半满
input RFE_ONE_; //422第一路fifo读空
output RD_FIFO_ONE; //读422第一路fifo控制信号
reg RD_FIFO_ONE;
input RHF_TWO_;
input RFE_TWO_;
output RD_FIFO_TWO;
reg RD_FIFO_TWO;
input RHF_THREE_;
input RFE_THREE_;
output RD_FIFO_THREE;
reg RD_FIFO_THREE;
input RHF_FORE_;
input RFE_FORE_;
output RD_FIFO_FORE;
reg RD_FIFO_FORE;
input RHF_232_;
input RFE_232_;
output RD_FIFO_232;
reg RD_FIFO_232;
//RAM的控制信号
output RAM_CE1_;
output RAM_CE2;
output RAM_BHE_;
output RAM_BLE_;
output RAM_WE_;
output [19:0] RAM_ADDR; //20bit width
reg RAM_CE1_;
reg RAM_CE2;
reg RAM_BHE_;
reg RAM_BLE_;
reg RAM_WE_;
reg [19:0] RAM_ADDR; //20bit width
//===================================
output RAM_OE_;
reg RAM_OE_;
//===================================
//输出数据有效的标志
//output data_to_ram_en;
//reg data_to_ram_en;
//output data_to_fifo_en;
//reg data_to_fifo_en;
///////////////////////////////////////////////
reg [6:0] state;//bit 7 width
//繁忙标志信号,表示总线正在被占用
reg busy_flag;
output busy_flag;
/////////////////////////////////////
//地址计数器,用于地址对LD输出
reg [31:0] RAM_WRITE_ADDR_POINTER;
output [31:0] RAM_WRITE_ADDR_POINTER;
//读地址计数器,用于标志LD的DMA方式读到RAM的哪一个地址
reg [31:0] RAM_READ_ADDR_POINTER;
output [31:0] RAM_READ_ADDR_POINTER;
//output read_state;
reg read_state;//读后端FIFO用的状态机
reg write_state;//写后端FIFO用的状态机
//================================================================================================//
reg [1:0] current_state;
//output [1:0] current_state;
reg [1:0] next_state;
wire half_full_state;
assign half_full_state = RHF_ONE_ || RHF_TWO_ || RHF_THREE_ || RHF_FORE_ || RHF_232_;
reg [4:0] operate_state;
//output [4:0] operate_state;
/////////////////////////////////////
//output [31:0] TOTAL_NUM_received;
//output [31:0] TOTAL_NUM_be_readed;
reg [31:0] TOTAL_NUM_received;//已经接收的数据量,总共为4G
reg [31:0] TOTAL_NUM_be_readed;//已经被上位机读走的数据量
/////////////////////////////////////
//如果任意一路fifo半满,则half_full_state状态为0,表示半满,准备开始工作
input write_allow;
output write_bkfifo;
reg write_bkfifo;
/////////////////////////////////////
output [4:0]fifo_sel;
reg [4:0]fifo_sel;
//reg [3:0]read_once_counter;
reg [8:0]bag_counter;
////////////////////////////
input read_bkfifo_start;
output read_bkfifo;
reg read_bkfifo;
output read_bkfifo_request;
wire read_bkfifo_request;
/////////////////////////////////////
always @(negedge CLK or negedge reset_)
begin//1
if(!reset_)begin
RAM_BHE_ <= 1'b0; //RAM_BHE_ is enable always
RAM_BLE_ <= 1'b0; //RAM_BLE_ is enable always
RAM_OE_ <= 1'b1;
RAM_WE_ <= 1'b1;
RAM_CE1_ <= 1'b0;
RAM_CE2 <= 1'b1;
busy_flag <= 1'b0;
RAM_WRITE_ADDR_POINTER <= 32'h0;//5地址计数器初始化
operate_state <= 5'b00000;
RAM_ADDR <= 20'h0;
RAM_READ_ADDR_POINTER <= 32'h0;//5地址计数器初始化
write_state <= 1'b0;
//ds_7864fifo_rd <= 1'b1;
//ds_7301fifo_rd <= 1'b1;
RD_FIFO_ONE <= 1'b0;
RD_FIFO_TWO <= 1'b0;
RD_FIFO_THREE <= 1'b0;
RD_FIFO_FORE <= 1'b0;
RD_FIFO_232 <= 1'b0;
//operate_state_readad1 <= 1'b0;
//operate_state_readad2 <= 1'b0;
//operate_state_read12io <= 1'b0;
//data_to_ram_en <= 1'b0;
//data_to_fifo_en <= 1'b0;
fifo_sel<=5'b11111;
//read_once_counter<=4'd0;
write_bkfifo <= 1'b0;
bag_counter[8:0] <= 9'd0;
TOTAL_NUM_received <= 32'd0;
end
else begin//2
casex(current_state)
2'd0:begin
//busy_flag <= busy_flag;//没有任何处理 busy == 0
if(busy_flag) begin
case (write_state)
1'b0: begin
if(!bag_counter[8]) begin
RAM_OE_ <= 1'b0;
RAM_ADDR <= RAM_READ_ADDR_POINTER[19:0];//放入地址
RAM_READ_ADDR_POINTER <= RAM_READ_ADDR_POINTER + 32'd1;//计数器+1
write_state <= 1'b1;
write_bkfifo <= 1'b0;
//RAM_CE1_ <= 1'b0;
//RAM_CE2 <= 1'b1;
end
else begin
write_bkfifo <= 1'b0;
write_state <= 1'b0;
busy_flag<=1'b0;
RAM_OE_ <= 1'b1;
//RAM_CE1_ <= 1'b1;
//RAM_CE2 <= 1'b0;
bag_counter <= 9'd0;
//data_to_fifo_en <= 1'b0;
end
end
1'b1: begin
write_bkfifo <= 1'b1;
write_state <= 1'b0;
bag_counter <= bag_counter+9'd1;
end
default: begin
write_bkfifo <= 1'b0;
busy_flag<=1'b0;
//RAM_OE_ <= 1'b1;
//RAM_CE1_ <= 1'b1;
//RAM_CE2 <= 1'b0;
read_state <= 1'b0;
end
endcase
end
else if((busy_flag==1'b0)&&(!write_allow/*FIFO有8bit空余*/)&&(RAM_READ_ADDR_POINTER<RAM_WRITE_ADDR_POINTER/*RAM的读指针 小于 写指针*/) )
//else if((busy_flag==1'b0)&&(!write_allow/*FIFO有8bit空余*/)&&(TOTAL_NUM_be_readed<TOTAL_NUM_received/*RAM的读指针 小于 写指针*/) )
begin
busy_flag <= 1'b1;
//data_to_fifo_en <= 1'b1;
end
else begin
busy_flag <= 1'b0;
//data_to_fifo_en <= 1'b0;
end
end
2'd1:begin//fifo半满了,从第一路到第四路,开始一次向ram里面写数据,然后地址自加一
case(operate_state)
5'd0:begin
busy_flag <= 1'b1;
//data_to_ram_en <= 1'b1;
if(RHF_ONE_ == 1)begin//表示第一路是半满的情况
operate_state <= 5'd1;//进入状态1
fifo_sel[1]<=1'b0;//fifo选通
end
else if(RHF_TWO_ == 1)begin
operate_state <= 5'd5;
fifo_sel[2]<=1'b0;
end
else if(RHF_THREE_ == 1)begin
operate_state <= 5'd9;
fifo_sel[3]<=1'b0;
end
else if(RHF_FORE_ == 1)begin
operate_state <= 5'd13;
fifo_sel[4]<=1'b0;
end
else begin
//operate_state <= 5'd4;//进入第二通道
operate_state<=5'd20;
end
end
5'd1:begin
if(!bag_counter[8])begin
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -