📄 core.v
字号:
/*===============================================================================================*/
/*416陈利彬编制 */
/*修改于11月21日13:29 */
/*需要修改读空信号,原来读空信号是低有效,现在是高表示读空 */
/*===============================================================================================*/
module core(
RHF_ONE_, //422 channel one half full
RFE_ONE_, //422第一路fifo读空
RD_FIFO_ONE, //读422第一路fifo控制信号
RHF_TWO_, //422第一路fifo半满
RFE_TWO_, //422第二路fifo读空
RD_FIFO_TWO, //读422第二路fifo控制信号
RHF_THREE_, //422第二路fifo半满
RFE_THREE_,
RD_FIFO_THREE,
RHF_FORE_,
RFE_FORE_,
RD_FIFO_FORE,
RHF_232_,
RFE_232_,
RD_FIFO_232,
/////////////////////////////////////////////
CLK,
reset_,
busy_flag,
////////////////////////////////////////////
write_allow,
write_bkfifo,
///////////////////////////////////////////
operate_state,
dma_finish_flag,//DMA结束标志,LA写入该标志,表示此次DMA结束,清零地址寄存器
current_state,
RAM_WRITE_ADDR_POINTER,//输出给PCI总线的地址计数器的数值
RAM_READ_ADDR_POINTER,
data_to_ram_en,//如果各路fifo输出给ram的信号有效,则此位=1;否则此位==0
data_to_fifo_en,
RAM_ADDR,
RAM_OE_,
RAM_CE1_,
RAM_CE2,
RAM_BHE_,
RAM_BLE_,
RAM_WE_,
fifo_sel,
read_state
);
input CLK;
input reset_;
input dma_finish_flag;
//422 and 232 FIFO控制和状态信号
input RHF_ONE_; //422第一路fifo半满
input RFE_ONE_; //422第一路fifo读空
output RD_FIFO_ONE; //读422第一路fifo控制信号
reg RD_FIFO_ONE;
input RHF_TWO_;
input RFE_TWO_;
output RD_FIFO_TWO;
reg RD_FIFO_TWO;
input RHF_THREE_;
input RFE_THREE_;
output RD_FIFO_THREE;
reg RD_FIFO_THREE;
input RHF_FORE_;
input RFE_FORE_;
output RD_FIFO_FORE;
reg RD_FIFO_FORE;
input RHF_232_;
input RFE_232_;
output RD_FIFO_232;
reg RD_FIFO_232;
//RAM的控制信号
output RAM_CE1_;
output RAM_CE2;
output RAM_BHE_;
output RAM_BLE_;
output RAM_WE_;
output [19:0] RAM_ADDR; //20bit width
reg RAM_CE1_;
reg RAM_CE2;
reg RAM_BHE_;
reg RAM_BLE_;
reg RAM_WE_;
reg [19:0] RAM_ADDR; //20bit width
//===================================
output RAM_OE_;
reg RAM_OE_;
//===================================
//输出数据有效的标志
output data_to_ram_en;
reg data_to_ram_en;
output data_to_fifo_en;
reg data_to_fifo_en;
///////////////////////////////////////////////
reg [6:0] state;//bit 7 width
//繁忙标志信号,表示总线正在被占用
reg busy_flag;
output busy_flag;
/////////////////////////////////////
//地址计数器,用于地址对LD输出
reg [19:0] RAM_WRITE_ADDR_POINTER;
output [19:0] RAM_WRITE_ADDR_POINTER;
//读地址计数器,用于标志LD的DMA方式读到RAM的哪一个地址
reg [19:0] RAM_READ_ADDR_POINTER;
output [19:0] RAM_READ_ADDR_POINTER;
output read_state;
reg read_state;
//================================================================================================//
reg [1:0] current_state;
output [1:0] current_state;
reg [1:0] next_state;
wire half_full_state;
assign half_full_state = RHF_ONE_ && RHF_TWO_ && RHF_THREE_ && RHF_FORE_ && RHF_232_;
reg [4:0] operate_state;
output [4:0] operate_state;
//reg [1:0] operate_state_read;
/*
reg operate_state_readad1;
reg operate_state_readad2;
reg operate_state_read12io;
*/
//如果任意一路fifo半满,则half_full_state状态为0,表示半满,准备开始工作
reg D422_c1_fe;
reg D422_c2_fe;
reg D422_c3_fe;
reg D422_c4_fe;
reg D232_fe;
input write_allow;
output write_bkfifo;
reg write_bkfifo;
/////////////////////////////////////
output [4:0]fifo_sel;
reg [4:0]fifo_sel;
reg [3:0]read_once_counter;
/////////////////////////////////////
always @(negedge CLK or negedge reset_)
begin//1
if(!reset_)begin
RAM_BHE_ <= 1'b0; //RAM_BHE_ is enable always
RAM_BLE_ <= 1'b0; //RAM_BLE_ is enable always
RAM_OE_ <= 1'b1;
RAM_WE_ <= 1'b1;
RAM_CE1_ <= 1'b0;
RAM_CE2 <= 1'b1;
busy_flag <= 1'b0;
RAM_WRITE_ADDR_POINTER <= 20'h1;//5地址计数器初始化
operate_state <= 5'b00000;
RAM_ADDR <= 20'h0;
RAM_READ_ADDR_POINTER <= 20'h1;//5地址计数器初始化
read_state <= 1'b0;
//ds_7864fifo_rd <= 1'b1;
//ds_7301fifo_rd <= 1'b1;
RD_FIFO_ONE <= 1'b0;
RD_FIFO_TWO <= 1'b0;
RD_FIFO_THREE <= 1'b0;
RD_FIFO_FORE <= 1'b0;
RD_FIFO_232 <= 1'b0;
//operate_state_readad1 <= 1'b0;
//operate_state_readad2 <= 1'b0;
//operate_state_read12io <= 1'b0;
D422_c1_fe <= 1'b1;
D422_c2_fe <= 1'b1;
D422_c3_fe <= 1'b1;
D422_c4_fe <= 1'b1;
D232_fe <= 1'b1;
data_to_ram_en <= 1'b0;
data_to_fifo_en <= 1'b0;
fifo_sel<=5'b11111;
read_once_counter<=4'd0;
write_bkfifo <= 1'b0;
end
else begin//2
casex(current_state)
3'd0:begin
//busy_flag <= busy_flag;//没有任何处理 busy == 0
if(busy_flag) begin
case (read_state)
1'b0: begin
if(!read_once_counter[3]) begin
write_bkfifo <= 1'b0;
RAM_OE_ <= 1'b0;
RAM_ADDR <= RAM_READ_ADDR_POINTER;//放入地址
RAM_READ_ADDR_POINTER <= RAM_READ_ADDR_POINTER + 20'd1;//计数器+1
read_state <= 1'b1;
//RAM_CE1_ <= 1'b0;
//RAM_CE2 <= 1'b1;
end
else begin
write_bkfifo <= 1'b0;
busy_flag<=1'b0;
RAM_OE_ <= 1'b1;
//RAM_CE1_ <= 1'b1;
//RAM_CE2 <= 1'b0;
read_once_counter <= 4'd0;
data_to_fifo_en <= 1'b0;
end
end
1'b1: begin
write_bkfifo <= 1'b1;
read_state <= 1'b0;
read_once_counter <= read_once_counter+4'd1;
end
default: begin
write_bkfifo <= 1'b0;
busy_flag<=1'b0;
RAM_OE_ <= 1'b1;
//RAM_CE1_ <= 1'b1;
//RAM_CE2 <= 1'b0;
read_state <= 1'b0;
end
endcase
end
else if((busy_flag==1'b0)&&(!write_allow/*FIFO有8bit空余*/)&&(RAM_READ_ADDR_POINTER<RAM_WRITE_ADDR_POINTER/*RAM的读指针 小于 写指针*/) )
begin
busy_flag <= 1'b1;
data_to_fifo_en <= 1'b1;
end
else begin
busy_flag <= 1'b0;
data_to_fifo_en <= 1'b0;
end
end
3'd1:begin//fifo半满了,从第一路到第四路,开始一次向ram里面写数据,然后地址自加一
case(operate_state)
5'd0:begin//这里应该首先加入判断,防止只有一路422工作的bug
busy_flag <= 1'b1;//busy == 1
data_to_ram_en <= 1'b1;//表示模块正在向RAM写数据
if(RFE_ONE_ == 1)begin//表示fifo没有被读空
operate_state <= 5'd1;//进入状态1
RD_FIFO_ONE <= 1'b0;//收回读fifo信号
end
else begin//如果fifo被读空了
RD_FIFO_ONE <= 1'b0;
fifo_sel[1]<=1'b1;
operate_state <= 5'd4;//进入状态4
end
end
5'd1:begin
if(RFE_ONE_ == 1)begin
RAM_ADDR <= RAM_WRITE_ADDR_POINTER;//放入地址=首地址+计数器
RAM_WRITE_ADDR_POINTER <= RAM_WRITE_ADDR_POINTER + 20'b01;//计数器+1//eulerhit
//RAM_CE1_ <= 1'b0;//加入写ram控制信号3个
//RAM_CE2 <= 1'b1;
RAM_WE_ <= 1'b0;
operate_state <= 5'd2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -