⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kbestparseforest2o.java

📁 MSTParser是以最大生成树理论为基础的判别式依存句法分析器。它将一科依存树的得分看作是 所有依存关系的得分的总和
💻 JAVA
字号:
package mstparser;public class KBestParseForest2O {    private ParseForestItem[][][][][] chart;    private String[] sent,pos;    private int start,end;    private int K;	    public KBestParseForest2O(int start, int end, DependencyInstance inst, int K) {	this.K = K;	chart = new ParseForestItem[end+1][end+1][2][3][K];	this.start = start;	this.end = end;	this.sent = inst.sentence;	this.pos = inst.pos;    }	    public boolean add(int s, int type, int dir, double score, FeatureVector fv) {					boolean added = false;	if(chart[s][s][dir][0][0] == null) {	    for(int i = 0; i < K; i++)		chart[s][s][dir][0][i] = new ParseForestItem(s,type,dir,Double.NEGATIVE_INFINITY,null);	}			if(chart[s][s][dir][0][K-1].prob > score)	    return false;	for(int i = 0; i < K; i++) {	    if(chart[s][s][dir][0][i].prob < score) {		ParseForestItem tmp = chart[s][s][dir][0][i];		chart[s][s][dir][0][i] = new ParseForestItem(s,type,dir,score,fv);		for(int j = i+1; j < K && tmp.prob != Double.NEGATIVE_INFINITY; j++) {		    ParseForestItem tmp1 = chart[s][s][dir][0][j];		    chart[s][s][dir][0][j] = tmp;		    tmp = tmp1;		}		added = true;		break;	    }	}	return added;    }    public boolean add(int s, int r, int t, int type,		       int dir, int comp, double score,		       FeatureVector fv,		       ParseForestItem p1, ParseForestItem p2) {			boolean added = false;	if(chart[s][t][dir][comp][0] == null) {	    for(int i = 0; i < K; i++)		chart[s][t][dir][comp][i] =		    new ParseForestItem(s,r,t,type,dir,comp,Double.NEGATIVE_INFINITY,null,null,null);	}	if(chart[s][t][dir][comp][K-1].prob > score)	    return false;			for(int i = 0; i < K; i++) {	    if(chart[s][t][dir][comp][i].prob < score) {		ParseForestItem tmp = chart[s][t][dir][comp][i];		chart[s][t][dir][comp][i] = new ParseForestItem(s,r,t,type,dir,comp,score,fv,p1,p2);		for(int j = i+1; j < K && tmp.prob != Double.NEGATIVE_INFINITY; j++) {		    ParseForestItem tmp1 = chart[s][t][dir][comp][j];		    chart[s][t][dir][comp][j] = tmp;		    tmp = tmp1;		}		added = true;		break;	    }	}	return added;		    }    public double getProb(int s, int t, int dir, int comp) {	return getProb(s,t,dir,comp,0);    }    public double getProb(int s, int t, int dir, int comp, int i) {	if(chart[s][t][dir][comp][i] != null)	    return chart[s][t][dir][comp][i].prob;	return Double.NEGATIVE_INFINITY;    }    public double[] getProbs(int s, int t, int dir, int comp) {	double[] result = new double[K];	for(int i = 0; i < K; i++)	    result[i] =		chart[s][t][dir][comp][i] != null ? chart[s][t][dir][comp][i].prob : Double.NEGATIVE_INFINITY;	return result;    }    public ParseForestItem getItem(int s, int t, int dir, int comp) {	return getItem(s,t,dir,comp,0);    }    public ParseForestItem getItem(int s, int t, int dir, int comp, int i) {	if(chart[s][t][dir][comp][i] != null)	    return chart[s][t][dir][comp][i];	return null;    }    public ParseForestItem[] getItems(int s, int t, int dir, int comp) {	if(chart[s][t][dir][comp][0] != null)	    return chart[s][t][dir][comp];	return null;    }    public Object[] getBestParse() {	Object[] d = new Object[2];	d[0] = getFeatureVector(chart[0][end][0][0][0]);	d[1] = getDepString(chart[0][end][0][0][0]);	return d;    }    public Object[][] getBestParses() {	Object[][] d = new Object[K][2];	for(int k = 0; k < K; k++) {	    if(chart[0][end][0][0][k].prob != Double.NEGATIVE_INFINITY) {		d[k][0] = getFeatureVector(chart[0][end][0][0][k]);		d[k][1] = getDepString(chart[0][end][0][0][k]);	    }	    else {		d[k][0] = null;		d[k][1] = null;	    }	}	return d;    }    public FeatureVector getFeatureVector(ParseForestItem pfi) {	if(pfi.left == null)	    return pfi.fv;	return cat(pfi.fv,cat(getFeatureVector(pfi.left),getFeatureVector(pfi.right)));    }    public String getDepString(ParseForestItem pfi) {	if(pfi.left == null)	    return "";	if(pfi.dir == 0 && pfi.comp == 1)	    return ((getDepString(pfi.left)+" "+getDepString(pfi.right)).trim()+" "+pfi.s+"|"+pfi.t+":"+pfi.type).trim();	else if(pfi.dir == 1 && pfi.comp == 1)	    return (pfi.t+"|"+pfi.s+":"+pfi.type+" "+(getDepString(pfi.left)+" "+getDepString(pfi.right)).trim()).trim();	return (getDepString(pfi.left) + " " + getDepString(pfi.right)).trim();    }	    public FeatureVector cat(FeatureVector fv1, FeatureVector fv2) {	return FeatureVector.cat(fv1,fv2);    }	    // returns pairs of indeces and -1,-1 if < K pairs    public int[][] getKBestPairs(ParseForestItem[] items1, ParseForestItem[] items2) {	// in this case K = items1.length	boolean[][] beenPushed = new boolean[K][K];			int[][] result = new int[K][2];	for(int i = 0; i < K; i++) {	    result[i][0] = -1;	    result[i][1] = -1;	}	BinaryHeap heap = new BinaryHeap(K+1);	int n = 0;	ValueIndexPair vip = new ValueIndexPair(items1[0].prob+items2[0].prob,0,0);	heap.add(vip);	beenPushed[0][0] = true;			while(n < K) {	    vip = heap.removeMax();				    if(vip.val == Double.NEGATIVE_INFINITY)		break;				    result[n][0] = vip.i1;	    result[n][1] = vip.i2;	    n++;	    if(n >= K)		break;				    if(!beenPushed[vip.i1+1][vip.i2]) {		heap.add(new ValueIndexPair(items1[vip.i1+1].prob+items2[vip.i2].prob,vip.i1+1,vip.i2));		beenPushed[vip.i1+1][vip.i2] = true;	    }	    if(!beenPushed[vip.i1][vip.i2+1]) {		heap.add(new ValueIndexPair(items1[vip.i1].prob+items2[vip.i2+1].prob,vip.i1,vip.i2+1));		beenPushed[vip.i1][vip.i2+1] = true;	    }	}			return result;    }	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -