📄 alphabetagammamontecarlorun.m
字号:
%%% DynaEst 3.032 02/18/2000
% Copyright (c) 2000 Yaakov Bar-Shalom
%
%AlphaBetaGammaMonteCarloRun alpha beta gamma Kalman filter -- Monte Carlo runs
% it's availabe only when SimulationFlag is 1,2,3
% Case 1 : No ExternalTruth, External Z : SimulationFlag = 1, 2 and no generation
% Case 2 : Exist ExternalTruth, No ExternalZ : SimulationFlag =1,2 and generation of ground truth or SimulationFlag = 3
% Case 3 : Extist ExternalTruth, ExternalZ : SimulationFlag =1,2 and generation truth and measurement or SimulationFlag =3 and generation measurement
% Case 4 : No ExternalTruth, ExternalZ : Simulation Flag = 4 <---Impossible with this file,see KFMCRUNFromMeasurement file
% True Track = Truth
% Mesurement = Mesurement
% Estimation = Estimation
% average xt(truth) = longxt
% average v(process noise) = longv
% average w(measurement noise) = longw
% average z(measurement) = longz
% average xp(predicted estimate) = longxp
% average zp(predicted measurement) = lognzp
% average nu(inovation) = longnu
% average x(estimate) = longx
% average xe(error) = longxe
% W = FilterGain
% P = Covariance
% if do not exist T, generate T
if exist('ExternalT','var') == 0
if nmt == 1
ExternalT = Tmin+(Tmax-Tmin)*rand(1,nrun);
else
ExternalT = ones(1,nrun)*Tmulti ;
end
end
% End of Step 1
nxactual = nx ;
longxt=zeros(nx,kmax);
longx=zeros(nxf,kmax);longxp=longx;longsqP1=longx ;
longxe=zeros(nxactual,kmax);longnee=longxe;longRMS1=longxe;
longz=zeros(nzf,kmax);longzp=longz;longnun=longz; longnu=longz;
longv=zeros(nvf,kmax);
longw=zeros(nwf,kmax);
% longmodePr=zeros(nmf,kmax);
longnees=zeros(1,kmax); longnis=longnees;
LongP=zeros(nxf*nxf,kmax);LongPP=LongP;
LongMSE=zeros(nxactual*nxactual, kmax);LongRMS2=LongMSE;LongsqP2=LongMSE;LongRMS3=LongMSE;LongsqP3=LongMSE;
LongS=zeros(nzf*nzf,kmax);
LongW=zeros(nxf*nzf,kmax);
[c,maxsize]=computer;
if nx*nx*nx*kmax<=maxsize
LLongRMS3=zeros(nx*nx*nx,kmax);LLongsqP3=LLongRMS3;
else
errordlg('RMS3 and sqP3 are truncated.','error');
LLongRMS3=zeros(nx*nx*nx,round(maxsize/(nx^3)));LLongsqP3=LLongRMS3;
end
Ft = zeros(nx,nx); Ff = zeros(nxf,nxf);
Gt = zeros(nx,nv); Gf = zeros(nxf,nvf);
Ht = zeros(nz,nx); Hf = zeros(nzf,nxf);
It = zeros(nz,nw); If = zeros(nzf,nwf);
Qt = zeros(nv,nv); Qf = zeros(nvf,nvf);
Rt = zeros(nw,nw); Rf = zeros(nwf,nwf);
Truth = zeros(nrun,nx,kmax);
Measurement = zeros(nrun,nz,kmax);
Estimation = zeros(nrun,nxf,kmax);
FilterGain = zeros(nxf,nzf,kmax) ;
Covariance = zeros(nxf,nxf,kmax) ;
Pvariance = Covariance;
Svariance = zeros(nzf,nzf,kmax);
colordef none;
% Monte Carlo runs:
Hf_wait = waitbar(0,'Doing Monte Carlo runs. Please wait...');
existtruth = exist('ExternalTruth','var') ;
existZ = exist('ExternalZ','var') ;
for nmc=1:nrun,
waitbar(nmc/nrun);
T = ExternalT(nmc);
% Step 2
if nmt == 1
if ~existtruth
[Ft,Gt,Qt] = ProcessModel(SystemModelFlag,nx,nv,T,omega,xt0,Ftstr,Gtstr,Qtstr) ;
end
[Ht,It,Rt] = ObservationModel(nz,nw,Htstr,Itstr,Rtstr) ;
else
mode = 1 ;
end
% End of Step 2
[Ff,Gf,Qf] = ProcessModel(FilterModelFlag,nxf,nvf,T,omegaf,x0,Ffstr,Gfstr,Qfstr) ;
[Hf,If,Rf] = ObservationModel(nzf,nwf,Hfstr,Ifstr,Rfstr) ;
% initial condition
clear x P;
xt = zeros(nx,1) ;
if ~existtruth
xt=xt0;
end
x=x0; P=P0; z=zeros(nz,1);
for k=1:kmax,
% Step 3
if nmt > 1
if k*T > FromTime(mode)
PrevSystemModelFlag = SystemModelFlag ;
[Ftstr, Gtstr,Htstr,Itstr,Qtstr,Rtstr vmt wmt SystemModelFlag omega] = FindMultiModel(k,T,FromTime,ToTime,ModeSystem,nmt) ;
mode = mode + 1 ;
if ~existtruth
[Ft,Gt,Qt] = ProcessModel(SystemModelFlag,nx,nv,T,omega,xt0,Ftstr,Gtstr,Qtstr) ;
end
if ~existZ
[Ht,It,Rt] = ObservationModel(nz,nw,Htstr,Itstr,Rtstr) ;
end
xt = ModeChanging(PrevSystemModelFlag,SystemModelFlag,xt,omega)
end
end
% End of Step 3
% generate true state and measurement at k
if existtruth
% v = Normal(vmt,Qt);
w = Normal(wmt,Rt);
xt(:) = ExternalTruth(nmc,:,k);
if exist('ExternalZ','var')
z(:) = ExternalZ(nmc,:,k) ;
else
% generate z
z = Ht*xt + It*w ;
end
else
[xt,z,v,w] = Xzgen(xt,Ft,Gt,Ht,It,Qt,Rt,vmt,wmt);
end
% store truth and measurement
Truth(nmc,:,k) = xt;
Measurement(nmc,:,k) = z;
% lemda = vmf/wmf*T^2;
clear W OmigaV OmigaW lemda beta alpha gama;
W = zeros(3*ncoor,ncoor);
OmigaV = sqrt(Qf*ones(ncoor,1));
OmigaW = sqrt(Rf*ones(ncoor,1));
lemda = OmigaV./OmigaW*T*T;
alpha = zeros(ncoor,1);
beta = zeros(ncoor,1);
gamma = zeros(ncoor,1);
for j=1:ncoor
sroots = roots([1, 0.5*lemda(j)-3, 0.5*lemda(j)+3, -1]);
for i = 1:length(sroots)
if isreal( sroots(i))
s = sroots(i);
break;
end
end
beta(j) = 2*(1-s)*(1-s);
alpha(j) = 1 - s*s;
gamma(j) = 2*lemda(j)*s;
end
for i = 1: ncoor
W((i-1)*3+1,i) = alpha(i);
W((i-1)*3+2,i) = beta(i)/T;
W((i-1)*3+3,i) = 0.5*gamma(i)/(T*T);
end
P11 = alpha.*OmigaW.*OmigaW;
P12 = beta.*OmigaW.*OmigaW/T;
P13 = gamma.*OmigaW.*OmigaW.*0.5./(T*T);
P22 = (8.*alpha.*beta+gamma.*(beta-2.*alpha-4.*ones(ncoor,1))).*OmigaW.*OmigaW./ ...
(8*T*T.*(ones(ncoor,1)-alpha));
P23 = beta.*(2.*beta-gamma).*OmigaW.*OmigaW./((4*T*T*T).*(ones(ncoor,1)-alpha));
P33 = gamma.*OmigaW.*OmigaW.*(2.*beta-alpha)./((4*T*T*T*T).*(ones(ncoor,1)-alpha));
P = zeros(3*ncoor,3*ncoor);
for i = 1: ncoor
P((i-1)*3+1,(i-1)*3+1) = P11(i);
P((i-1)*3+1,(i-1)*3+2) = P12(i);
P((i-1)*3+1,(i-1)*3+3) = P13(i);
P((i-1)*3+2,(i-1)*3+1) = P12(i);
P((i-1)*3+2,(i-1)*3+2) = P22(i);
P((i-1)*3+2,(i-1)*3+3) = P23(i);
P((i-1)*3+3,(i-1)*3+1) = P13(i);
P((i-1)*3+3,(i-1)*3+2) = P23(i);
P((i-1)*3+3,(i-1)*3+3) = P33(i);
end
[x,xp,zp,nu]=AlphaBetaKalman(x,W,z,vmf,wmf,Ff,Gf,Hf,If);
if nmc == 1
FilterGain(:,:,k) = W ;
Covariance(:,:,k) = P ;
end
Estimation(nmc,:,k) = x;
longxt(:,k) = longxt(:,k) + xt/nrun;
longz(:,k) = longz(:,k) + z/nrun;
longv(:,k) = longv(:,k) + v/nrun;
longw(:,k) = longw(:,k) + w/nrun;
longx(:,k) = longx(:,k) + x/nrun;
LongP(:,k) = LongP(:,k) + P(:)/nrun;
% longmodePr(:,k) = longmodePr(:,k) + modePr/nrun;
clear xe;
xe = xt-x;
longxe(:,k) = longxe(:,k) + xe/nrun;
%%% will be deleted
%dummy = xe*xe';
%LongMSE(:,k)= LongMSE(:,k) + dummy(:)/nrun;
% LongPP(:,k) = LongPP(:,k) + PP(:)/nrun;
% LongS(:,k) = LongS(:,k) + S(:)/nrun;
%LongW(:,k) = LongW(:,k) + W(:)/nrun;
%longRMS1(:,k)= longRMS1(:,k) + xe.*xe/nrun;
%dummy=[]; for i=1:nx, dummy(i) = P(i,i); end
%longsqP1(:,k)= longsqP1(:,k) + dummy'/nrun;
%%%
clear RMS2 sqP2;
%% debug 04-01-01
if ncoor ~= 1
for i=1:nx
for j=1:nx
RMS2(i,j) = xe(i)^2+xe(j)^2;
sqP2(i,j) = P(i,i)+P(j,j);
end
end
else
for i=1:nx
for j=1:nx
RMS2(i,j) = xe(i)^2 ;
sqP2(i,j) = P(i,j);
end
end
end
%xe, P, RMS2, sqP2, pause
LongRMS2(:,k)= LongRMS2(:,k) + RMS2(:)/nrun;
LongsqP2(:,k)= LongsqP2(:,k) + sqP2(:)/nrun;
% clear RMS3 sqP3;
% for l=1:nx,
% RMS3 = zeros(nx,nx);
% sqP3 = zeros(nx,nx);
% for i=1:nx, for j=1:nx,
% RMS3(i,j) = xe(i)^2+xe(j)^2+xe(l)^2;
% sqP3(i,j) = P(i,i)+P(j,j)+P(l,l);
% end, end
%LongRMS3(:,l) = RMS3(:);
% LongsqP3(:,l) = sqP3(:);
% end
% if k<=maxsize/(nx^3)
% LLongRMS3(:,k)=LLongRMS3(:,k) + LongRMS3(:)/nrun;
% LLongsqP3(:,k)=LLongsqP3(:,k) + LongsqP3(:)/nrun;
% end
longxp(:,k) = longxp(:,k) + xp/nrun;
longzp(:,k) = longzp(:,k) + zp/nrun;
longnu(:,k) = longnu(:,k) + nu/nrun;
nees = xe'*inv(P)*xe;
longnees(k) = longnees(k) + nees/nrun;
for i=1:nx, longnee(i,k) = longnee(i,k) + xe(i)/sqrt(P(i,i))/nrun;
end
%nis = nu'*inv(S)*nu;
%longnis(k) = longnis(k) + nis/nrun;
%for i=1:nzf, longnun(i,k) = longnun(i,k) + nu(i)/sqrt(S(i,i))/nrun; end
%nis = nu'*inv(S)*nu;
%longnis(k) = longnis(k) + nis/nrun;
%for i=1:nz, longnun(i,k) = longnun(i,k) + nu(i)/sqrt(S(i,i))/nrun; end
end
end
longRMS1=sqrt(longRMS1);
longsqP1=sqrt(longsqP1);
LongRMS2 = sqrt(LongRMS2);
LongsqP2 = sqrt(LongsqP2);
LLongRMS3 = sqrt(LLongRMS3);
LLongsqP3 = sqrt(LLongsqP3);
clear existtruth existZ mode ;
close(Hf_wait);
% The End
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -