⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test1.save

📁 c++实现的KNN库:建立高维度的K-d tree,实现K邻域搜索
💻 SAVE
字号:
------------------------------------------------------------ann_test: Version 1.0     Copyright: David M. Mount and Sunil Arya.    Latest Revision: Mar 1, 2005.------------------------------------------------------------validate = on   (Warning: this may slow execution time.)stats = query_stats[Read Data Points:  data_size  = 20  file_name  = test1-data.pts  dim        = 2][Read Query Points:  query_size = 10  file_name  = test1-query.pts  dim        = 2][Build ann-structure:  split_rule    = suggest  shrink_rule   = none  data_size     = 20  dim           = 2  bucket_size   = 1  process_time  = 0 sec  (Structure Statistics:    n_nodes          = 39 (opt = 40, best if < 400)        n_leaves     = 20 (0 contain no points)        n_splits     = 19        n_shrinks    = 0    empty_leaves     = 0 percent (best if < 50 percent)    depth            = 6 (opt = 4, best if < 17)    avg_aspect_ratio = 1.48847 (best if < 20)  )](Computing true nearest neighbors for validation.  This may take time.)[Run Queries:  query_size    = 10  dim           = 2  search_method = standard  epsilon       = 0  near_neigh    = 3  true_nn       = 13  query_time    = 0 sec/query (biased by perf measurements)  (Performance stats:  [      mean :    stddev ]<      min ,       max >    leaf_nodes       = [       6.3 :     2.751 ]<        4 ,        11 >    splitting_nodes  = [       8.8 :     3.676 ]<        5 ,        15 >    shrinking_nodes  = [         0 :         0 ]<        0 ,         0 >    total_nodes      = [      15.1 :      6.35 ]<        9 ,        26 >    points_visited   = [       6.3 :     2.751 ]<        4 ,        11 >    coord_hits/pt    = [      0.57 :    0.2201 ]<     0.35 ,      0.95 >    floating_ops_(K) = [     0.156 :    0.0563 ]<    0.101 ,     0.254 >    average_error    = [         0 :         0 ]<        0 ,         0 >    rank_error       = [         0 :         0 ]<        0 ,         0 >  )][Run Queries:  query_size    = 10  dim           = 2  search_method = priority  epsilon       = 0  near_neigh    = 3  true_nn       = 13  query_time    = 0 sec/query (biased by perf measurements)  (Performance stats:  [      mean :    stddev ]<      min ,       max >    leaf_nodes       = [       5.9 :     2.025 ]<        4 ,         9 >    splitting_nodes  = [       8.7 :     3.498 ]<        5 ,        15 >    shrinking_nodes  = [         0 :         0 ]<        0 ,         0 >    total_nodes      = [      14.6 :      5.42 ]<        9 ,        24 >    points_visited   = [       5.9 :     2.025 ]<        4 ,         9 >    coord_hits/pt    = [     0.535 :    0.1667 ]<     0.35 ,       0.8 >    floating_ops_(K) = [    0.1719 :   0.05861 ]<    0.114 ,     0.267 >    average_error    = [         0 :         0 ]<        0 ,         0 >    rank_error       = [         0 :         0 ]<        0 ,         0 >  )]

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -