📄 brute.cpp
字号:
//----------------------------------------------------------------------// File: brute.cpp// Programmer: Sunil Arya and David Mount// Description: Brute-force nearest neighbors// Last modified: 05/03/05 (Version 1.1)//----------------------------------------------------------------------// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and// David Mount. All Rights Reserved.// // This software and related documentation is part of the Approximate// Nearest Neighbor Library (ANN). This software is provided under// the provisions of the Lesser GNU Public License (LGPL). See the// file ../ReadMe.txt for further information.// // The University of Maryland (U.M.) and the authors make no// representations about the suitability or fitness of this software for// any purpose. It is provided "as is" without express or implied// warranty.//----------------------------------------------------------------------// History:// Revision 0.1 03/04/98// Initial release// Revision 1.1 05/03/05// Added fixed-radius kNN search//----------------------------------------------------------------------#include <ANN/ANNx.h> // all ANN includes#include "pr_queue_k.h" // k element priority queue//----------------------------------------------------------------------// Brute-force search simply stores a pointer to the list of// data points and searches linearly for the nearest neighbor.// The k nearest neighbors are stored in a k-element priority// queue (which is implemented in a pretty dumb way as well).//// If ANN_ALLOW_SELF_MATCH is ANNfalse then data points at distance// zero are not considered.//// Note that the error bound eps is passed in, but it is ignored.// These routines compute exact nearest neighbors (which is needed// for validation purposes in ann_test.cpp).//----------------------------------------------------------------------ANNbruteForce::ANNbruteForce( // constructor from point array ANNpointArray pa, // point array int n, // number of points int dd) // dimension{ dim = dd; n_pts = n; pts = pa;}ANNbruteForce::~ANNbruteForce() { } // destructor (empty)void ANNbruteForce::annkSearch( // approx k near neighbor search ANNpoint q, // query point int k, // number of near neighbors to return ANNidxArray nn_idx, // nearest neighbor indices (returned) ANNdistArray dd, // dist to near neighbors (returned) double eps) // error bound (ignored){ ANNmin_k mk(k); // construct a k-limited priority queue int i; if (k > n_pts) { // too many near neighbors? annError("Requesting more near neighbors than data points", ANNabort); } // run every point through queue for (i = 0; i < n_pts; i++) { // compute distance to point ANNdist sqDist = annDist(dim, pts[i], q); if (ANN_ALLOW_SELF_MATCH || sqDist != 0) mk.insert(sqDist, i); } for (i = 0; i < k; i++) { // extract the k closest points dd[i] = mk.ith_smallest_key(i); nn_idx[i] = mk.ith_smallest_info(i); }}int ANNbruteForce::annkFRSearch( // approx fixed-radius kNN search ANNpoint q, // query point ANNdist sqRad, // squared radius int k, // number of near neighbors to return ANNidxArray nn_idx, // nearest neighbor array (returned) ANNdistArray dd, // dist to near neighbors (returned) double eps) // error bound{ ANNmin_k mk(k); // construct a k-limited priority queue int i; int pts_in_range = 0; // number of points in query range // run every point through queue for (i = 0; i < n_pts; i++) { // compute distance to point ANNdist sqDist = annDist(dim, pts[i], q); if (sqDist <= sqRad && // within radius bound (ANN_ALLOW_SELF_MATCH || sqDist != 0)) { // ...and no self match mk.insert(sqDist, i); pts_in_range++; } } for (i = 0; i < k; i++) { // extract the k closest points if (dd != NULL) dd[i] = mk.ith_smallest_key(i); if (nn_idx != NULL) nn_idx[i] = mk.ith_smallest_info(i); } return pts_in_range;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -