📄 bd_tree.cpp
字号:
// repeat for high side ANNcoord gap_lo = inner_box.lo[i] - bnd_box.lo[i]; if (gap_lo < max_length*BD_GAP_THRESH) inner_box.lo[i] = bnd_box.lo[i]; // no - expand else shrink_ct++; // yes - shrink this side } if (shrink_ct >= BD_CT_THRESH) // did we shrink enough sides? return SHRINK; else return SPLIT;}//----------------------------------------------------------------------// tryCentroidShrink - Attempt a centroid shrink//// We repeatedly apply the splitting rule, always to the larger subset// of points, until the number of points decreases by the constant// fraction BD_FRACTION. If this takes more than dim*BD_MAX_SPLIT_FAC// splits for this to happen, then we shrink to the final inner box// Otherwise we split.//----------------------------------------------------------------------const float BD_MAX_SPLIT_FAC = 0.5; // maximum number of splits allowedconst float BD_FRACTION = 0.5; // ...to reduce points by this fraction // ...This must be < 1.ANNdecomp tryCentroidShrink( // try a centroid shrink ANNpointArray pa, // point array ANNidxArray pidx, // point indices to store in subtree int n, // number of points int dim, // dimension of space const ANNorthRect &bnd_box, // current bounding box ANNkd_splitter splitter, // splitting procedure ANNorthRect &inner_box) // inner box if shrinking (returned){ int n_sub = n; // number of points in subset int n_goal = (int) (n*BD_FRACTION); // number of point in goal int n_splits = 0; // number of splits needed // initialize inner box to bounding box annAssignRect(dim, inner_box, bnd_box); while (n_sub > n_goal) { // keep splitting until goal reached int cd; // cut dim from splitter (ignored) ANNcoord cv; // cut value from splitter (ignored) int n_lo; // number of points on low side // invoke splitting procedure (*splitter)(pa, pidx, inner_box, n_sub, dim, cd, cv, n_lo); n_splits++; // increment split count if (n_lo >= n_sub/2) { // most points on low side inner_box.hi[cd] = cv; // collapse high side n_sub = n_lo; // recurse on lower points } else { // most points on high side inner_box.lo[cd] = cv; // collapse low side pidx += n_lo; // recurse on higher points n_sub -= n_lo; } } if (n_splits > dim*BD_MAX_SPLIT_FAC)// took too many splits return SHRINK; // shrink to final subset else return SPLIT;}//----------------------------------------------------------------------// selectDecomp - select which decomposition to use//----------------------------------------------------------------------ANNdecomp selectDecomp( // select decomposition method ANNpointArray pa, // point array ANNidxArray pidx, // point indices to store in subtree int n, // number of points int dim, // dimension of space const ANNorthRect &bnd_box, // current bounding box ANNkd_splitter splitter, // splitting procedure ANNshrinkRule shrink, // shrinking rule ANNorthRect &inner_box) // inner box if shrinking (returned){ ANNdecomp decomp = SPLIT; // decomposition switch (shrink) { // check shrinking rule case ANN_BD_NONE: // no shrinking allowed decomp = SPLIT; break; case ANN_BD_SUGGEST: // author's suggestion case ANN_BD_SIMPLE: // simple shrink decomp = trySimpleShrink( pa, pidx, // points and indices n, dim, // number of points and dimension bnd_box, // current bounding box inner_box); // inner box if shrinking (returned) break; case ANN_BD_CENTROID: // centroid shrink decomp = tryCentroidShrink( pa, pidx, // points and indices n, dim, // number of points and dimension bnd_box, // current bounding box splitter, // splitting procedure inner_box); // inner box if shrinking (returned) break; default: annError("Illegal shrinking rule", ANNabort); } return decomp;}//----------------------------------------------------------------------// rbd_tree - recursive procedure to build a bd-tree//// This is analogous to rkd_tree, but for bd-trees. See the// procedure rkd_tree() in kd_split.cpp for more information.//// If the number of points falls below the bucket size, then a// leaf node is created for the points. Otherwise we invoke the// procedure selectDecomp() which determines whether we are to// split or shrink. If splitting is chosen, then we essentially// do exactly as rkd_tree() would, and invoke the specified// splitting procedure to the points. Otherwise, the selection// procedure returns a bounding box, from which we extract the// appropriate shrinking bounds, and create a shrinking node.// Finally the points are subdivided, and the procedure is// invoked recursively on the two subsets to form the children.//----------------------------------------------------------------------ANNkd_ptr rbd_tree( // recursive construction of bd-tree ANNpointArray pa, // point array ANNidxArray pidx, // point indices to store in subtree int n, // number of points int dim, // dimension of space int bsp, // bucket space ANNorthRect &bnd_box, // bounding box for current node ANNkd_splitter splitter, // splitting routine ANNshrinkRule shrink) // shrinking rule{ ANNdecomp decomp; // decomposition method ANNorthRect inner_box(dim); // inner box (if shrinking) if (n <= bsp) { // n small, make a leaf node if (n == 0) // empty leaf node return KD_TRIVIAL; // return (canonical) empty leaf else // construct the node and return return new ANNkd_leaf(n, pidx); } decomp = selectDecomp( // select decomposition method pa, pidx, // points and indices n, dim, // number of points and dimension bnd_box, // current bounding box splitter, shrink, // splitting/shrinking methods inner_box); // inner box if shrinking (returned) if (decomp == SPLIT) { // split selected int cd; // cutting dimension ANNcoord cv; // cutting value int n_lo; // number on low side of cut // invoke splitting procedure (*splitter)(pa, pidx, bnd_box, n, dim, cd, cv, n_lo); ANNcoord lv = bnd_box.lo[cd]; // save bounds for cutting dimension ANNcoord hv = bnd_box.hi[cd]; bnd_box.hi[cd] = cv; // modify bounds for left subtree ANNkd_ptr lo = rbd_tree( // build left subtree pa, pidx, n_lo, // ...from pidx[0..n_lo-1] dim, bsp, bnd_box, splitter, shrink); bnd_box.hi[cd] = hv; // restore bounds bnd_box.lo[cd] = cv; // modify bounds for right subtree ANNkd_ptr hi = rbd_tree( // build right subtree pa, pidx + n_lo, n-n_lo,// ...from pidx[n_lo..n-1] dim, bsp, bnd_box, splitter, shrink); bnd_box.lo[cd] = lv; // restore bounds // create the splitting node return new ANNkd_split(cd, cv, lv, hv, lo, hi); } else { // shrink selected int n_in; // number of points in box int n_bnds; // number of bounding sides annBoxSplit( // split points around inner box pa, // points to split pidx, // point indices n, // number of points dim, // dimension inner_box, // inner box n_in); // number of points inside (returned) ANNkd_ptr in = rbd_tree( // build inner subtree pidx[0..n_in-1] pa, pidx, n_in, dim, bsp, inner_box, splitter, shrink); ANNkd_ptr out = rbd_tree( // build outer subtree pidx[n_in..n] pa, pidx+n_in, n - n_in, dim, bsp, bnd_box, splitter, shrink); ANNorthHSArray bnds = NULL; // bounds (alloc in Box2Bnds and // ...freed in bd_shrink destroyer) annBox2Bnds( // convert inner box to bounds inner_box, // inner box bnd_box, // enclosing box dim, // dimension n_bnds, // number of bounds (returned) bnds); // bounds array (modified) // return shrinking node return new ANNbd_shrink(n_bnds, bnds, in, out); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -