📄 kd_pr_search.cpp
字号:
//----------------------------------------------------------------------// File: kd_pr_search.cpp// Programmer: Sunil Arya and David Mount// Description: Priority search for kd-trees// Last modified: 01/04/05 (Version 1.0)//----------------------------------------------------------------------// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and// David Mount. All Rights Reserved.// // This software and related documentation is part of the Approximate// Nearest Neighbor Library (ANN). This software is provided under// the provisions of the Lesser GNU Public License (LGPL). See the// file ../ReadMe.txt for further information.// // The University of Maryland (U.M.) and the authors make no// representations about the suitability or fitness of this software for// any purpose. It is provided "as is" without express or implied// warranty.//----------------------------------------------------------------------// History:// Revision 0.1 03/04/98// Initial release//----------------------------------------------------------------------#include "kd_pr_search.h" // kd priority search declarations//----------------------------------------------------------------------// Approximate nearest neighbor searching by priority search.// The kd-tree is searched for an approximate nearest neighbor.// The point is returned through one of the arguments, and the// distance returned is the SQUARED distance to this point.//// The method used for searching the kd-tree is called priority// search. (It is described in Arya and Mount, ``Algorithms for// fast vector quantization,'' Proc. of DCC '93: Data Compression// Conference}, eds. J. A. Storer and M. Cohn, IEEE Press, 1993,// 381--390.)//// The cell of the kd-tree containing the query point is located,// and cells are visited in increasing order of distance from the// query point. This is done by placing each subtree which has// NOT been visited in a priority queue, according to the closest// distance of the corresponding enclosing rectangle from the// query point. The search stops when the distance to the nearest// remaining rectangle exceeds the distance to the nearest point// seen by a factor of more than 1/(1+eps). (Implying that any// point found subsequently in the search cannot be closer by more// than this factor.)//// The main entry point is annkPriSearch() which sets things up and// then call the recursive routine ann_pri_search(). This is a// recursive routine which performs the processing for one node in// the kd-tree. There are two versions of this virtual procedure,// one for splitting nodes and one for leaves. When a splitting node// is visited, we determine which child to continue the search on// (the closer one), and insert the other child into the priority// queue. When a leaf is visited, we compute the distances to the// points in the buckets, and update information on the closest// points.//// Some trickery is used to incrementally update the distance from// a kd-tree rectangle to the query point. This comes about from// the fact that which each successive split, only one component// (along the dimension that is split) of the squared distance to// the child rectangle is different from the squared distance to// the parent rectangle.//----------------------------------------------------------------------//----------------------------------------------------------------------// To keep argument lists short, a number of global variables// are maintained which are common to all the recursive calls.// These are given below.//----------------------------------------------------------------------double ANNprEps; // the error boundint ANNprDim; // dimension of spaceANNpoint ANNprQ; // query pointdouble ANNprMaxErr; // max tolerable squared errorANNpointArray ANNprPts; // the pointsANNpr_queue *ANNprBoxPQ; // priority queue for boxesANNmin_k *ANNprPointMK; // set of k closest points//----------------------------------------------------------------------// annkPriSearch - priority search for k nearest neighbors//----------------------------------------------------------------------void ANNkd_tree::annkPriSearch( ANNpoint q, // query point int k, // number of near neighbors to return ANNidxArray nn_idx, // nearest neighbor indices (returned) ANNdistArray dd, // dist to near neighbors (returned) double eps) // error bound (ignored){ // max tolerable squared error ANNprMaxErr = ANN_POW(1.0 + eps); ANN_FLOP(2) // increment floating ops ANNprDim = dim; // copy arguments to static equivs ANNprQ = q; ANNprPts = pts; ANNptsVisited = 0; // initialize count of points visited ANNprPointMK = new ANNmin_k(k); // create set for closest k points // distance to root box ANNdist box_dist = annBoxDistance(q, bnd_box_lo, bnd_box_hi, dim); ANNprBoxPQ = new ANNpr_queue(n_pts);// create priority queue for boxes ANNprBoxPQ->insert(box_dist, root); // insert root in priority queue while (ANNprBoxPQ->non_empty() && (!(ANNmaxPtsVisited != 0 && ANNptsVisited > ANNmaxPtsVisited))) { ANNkd_ptr np; // next box from prior queue // extract closest box from queue ANNprBoxPQ->extr_min(box_dist, (void *&) np); ANN_FLOP(2) // increment floating ops if (box_dist*ANNprMaxErr >= ANNprPointMK->max_key()) break; np->ann_pri_search(box_dist); // search this subtree. } for (int i = 0; i < k; i++) { // extract the k-th closest points dd[i] = ANNprPointMK->ith_smallest_key(i); nn_idx[i] = ANNprPointMK->ith_smallest_info(i); } delete ANNprPointMK; // deallocate closest point set delete ANNprBoxPQ; // deallocate priority queue}//----------------------------------------------------------------------// kd_split::ann_pri_search - search a splitting node//----------------------------------------------------------------------void ANNkd_split::ann_pri_search(ANNdist box_dist){ ANNdist new_dist; // distance to child visited later // distance to cutting plane ANNcoord cut_diff = ANNprQ[cut_dim] - cut_val; if (cut_diff < 0) { // left of cutting plane ANNcoord box_diff = cd_bnds[ANN_LO] - ANNprQ[cut_dim]; if (box_diff < 0) // within bounds - ignore box_diff = 0; // distance to further box new_dist = (ANNdist) ANN_SUM(box_dist, ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff))); if (child[ANN_HI] != KD_TRIVIAL)// enqueue if not trivial ANNprBoxPQ->insert(new_dist, child[ANN_HI]); // continue with closer child child[ANN_LO]->ann_pri_search(box_dist); } else { // right of cutting plane ANNcoord box_diff = ANNprQ[cut_dim] - cd_bnds[ANN_HI]; if (box_diff < 0) // within bounds - ignore box_diff = 0; // distance to further box new_dist = (ANNdist) ANN_SUM(box_dist, ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff))); if (child[ANN_LO] != KD_TRIVIAL)// enqueue if not trivial ANNprBoxPQ->insert(new_dist, child[ANN_LO]); // continue with closer child child[ANN_HI]->ann_pri_search(box_dist); } ANN_SPL(1) // one more splitting node visited ANN_FLOP(8) // increment floating ops}//----------------------------------------------------------------------// kd_leaf::ann_pri_search - search points in a leaf node//// This is virtually identical to the ann_search for standard search.//----------------------------------------------------------------------void ANNkd_leaf::ann_pri_search(ANNdist box_dist){ register ANNdist dist; // distance to data point register ANNcoord* pp; // data coordinate pointer register ANNcoord* qq; // query coordinate pointer register ANNdist min_dist; // distance to k-th closest point register ANNcoord t; register int d; min_dist = ANNprPointMK->max_key(); // k-th smallest distance so far for (int i = 0; i < n_pts; i++) { // check points in bucket pp = ANNprPts[bkt[i]]; // first coord of next data point qq = ANNprQ; // first coord of query point dist = 0; for(d = 0; d < ANNprDim; d++) { ANN_COORD(1) // one more coordinate hit ANN_FLOP(4) // increment floating ops t = *(qq++) - *(pp++); // compute length and adv coordinate // exceeds dist to k-th smallest? if( (dist = ANN_SUM(dist, ANN_POW(t))) > min_dist) { break; } } if (d >= ANNprDim && // among the k best? (ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem // add it to the list ANNprPointMK->insert(dist, bkt[i]); min_dist = ANNprPointMK->max_key(); } } ANN_LEAF(1) // one more leaf node visited ANN_PTS(n_pts) // increment points visited ANNptsVisited += n_pts; // increment number of points visited}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -