⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kd_pr_search.cpp

📁 c++实现的KNN库:建立高维度的K-d tree,实现K邻域搜索
💻 CPP
字号:
//----------------------------------------------------------------------// File:			kd_pr_search.cpp// Programmer:		Sunil Arya and David Mount// Description:		Priority search for kd-trees// Last modified:	01/04/05 (Version 1.0)//----------------------------------------------------------------------// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and// David Mount.  All Rights Reserved.// // This software and related documentation is part of the Approximate// Nearest Neighbor Library (ANN).  This software is provided under// the provisions of the Lesser GNU Public License (LGPL).  See the// file ../ReadMe.txt for further information.// // The University of Maryland (U.M.) and the authors make no// representations about the suitability or fitness of this software for// any purpose.  It is provided "as is" without express or implied// warranty.//----------------------------------------------------------------------// History://	Revision 0.1  03/04/98//		Initial release//----------------------------------------------------------------------#include "kd_pr_search.h"				// kd priority search declarations//----------------------------------------------------------------------//	Approximate nearest neighbor searching by priority search.//		The kd-tree is searched for an approximate nearest neighbor.//		The point is returned through one of the arguments, and the//		distance returned is the SQUARED distance to this point.////		The method used for searching the kd-tree is called priority//		search.  (It is described in Arya and Mount, ``Algorithms for//		fast vector quantization,'' Proc. of DCC '93: Data Compression//		Conference}, eds. J. A. Storer and M. Cohn, IEEE Press, 1993,//		381--390.)////		The cell of the kd-tree containing the query point is located,//		and cells are visited in increasing order of distance from the//		query point.  This is done by placing each subtree which has//		NOT been visited in a priority queue, according to the closest//		distance of the corresponding enclosing rectangle from the//		query point.  The search stops when the distance to the nearest//		remaining rectangle exceeds the distance to the nearest point//		seen by a factor of more than 1/(1+eps). (Implying that any//		point found subsequently in the search cannot be closer by more//		than this factor.)////		The main entry point is annkPriSearch() which sets things up and//		then call the recursive routine ann_pri_search().  This is a//		recursive routine which performs the processing for one node in//		the kd-tree.  There are two versions of this virtual procedure,//		one for splitting nodes and one for leaves. When a splitting node//		is visited, we determine which child to continue the search on//		(the closer one), and insert the other child into the priority//		queue.  When a leaf is visited, we compute the distances to the//		points in the buckets, and update information on the closest//		points.////		Some trickery is used to incrementally update the distance from//		a kd-tree rectangle to the query point.  This comes about from//		the fact that which each successive split, only one component//		(along the dimension that is split) of the squared distance to//		the child rectangle is different from the squared distance to//		the parent rectangle.//----------------------------------------------------------------------//----------------------------------------------------------------------//		To keep argument lists short, a number of global variables//		are maintained which are common to all the recursive calls.//		These are given below.//----------------------------------------------------------------------double			ANNprEps;				// the error boundint				ANNprDim;				// dimension of spaceANNpoint		ANNprQ;					// query pointdouble			ANNprMaxErr;			// max tolerable squared errorANNpointArray	ANNprPts;				// the pointsANNpr_queue		*ANNprBoxPQ;			// priority queue for boxesANNmin_k		*ANNprPointMK;			// set of k closest points//----------------------------------------------------------------------//	annkPriSearch - priority search for k nearest neighbors//----------------------------------------------------------------------void ANNkd_tree::annkPriSearch(	ANNpoint			q,				// query point	int					k,				// number of near neighbors to return	ANNidxArray			nn_idx,			// nearest neighbor indices (returned)	ANNdistArray		dd,				// dist to near neighbors (returned)	double				eps)			// error bound (ignored){										// max tolerable squared error	ANNprMaxErr = ANN_POW(1.0 + eps);	ANN_FLOP(2)							// increment floating ops	ANNprDim = dim;						// copy arguments to static equivs	ANNprQ = q;	ANNprPts = pts;	ANNptsVisited = 0;					// initialize count of points visited	ANNprPointMK = new ANNmin_k(k);		// create set for closest k points										// distance to root box	ANNdist box_dist = annBoxDistance(q,				bnd_box_lo, bnd_box_hi, dim);	ANNprBoxPQ = new ANNpr_queue(n_pts);// create priority queue for boxes	ANNprBoxPQ->insert(box_dist, root); // insert root in priority queue	while (ANNprBoxPQ->non_empty() &&		(!(ANNmaxPtsVisited != 0 && ANNptsVisited > ANNmaxPtsVisited))) {		ANNkd_ptr np;					// next box from prior queue										// extract closest box from queue		ANNprBoxPQ->extr_min(box_dist, (void *&) np);		ANN_FLOP(2)						// increment floating ops		if (box_dist*ANNprMaxErr >= ANNprPointMK->max_key())			break;		np->ann_pri_search(box_dist);	// search this subtree.	}	for (int i = 0; i < k; i++) {		// extract the k-th closest points		dd[i] = ANNprPointMK->ith_smallest_key(i);		nn_idx[i] = ANNprPointMK->ith_smallest_info(i);	}	delete ANNprPointMK;				// deallocate closest point set	delete ANNprBoxPQ;					// deallocate priority queue}//----------------------------------------------------------------------//	kd_split::ann_pri_search - search a splitting node//----------------------------------------------------------------------void ANNkd_split::ann_pri_search(ANNdist box_dist){	ANNdist new_dist;					// distance to child visited later										// distance to cutting plane	ANNcoord cut_diff = ANNprQ[cut_dim] - cut_val;	if (cut_diff < 0) {					// left of cutting plane		ANNcoord box_diff = cd_bnds[ANN_LO] - ANNprQ[cut_dim];		if (box_diff < 0)				// within bounds - ignore			box_diff = 0;										// distance to further box		new_dist = (ANNdist) ANN_SUM(box_dist,				ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));		if (child[ANN_HI] != KD_TRIVIAL)// enqueue if not trivial			ANNprBoxPQ->insert(new_dist, child[ANN_HI]);										// continue with closer child		child[ANN_LO]->ann_pri_search(box_dist);	}	else {								// right of cutting plane		ANNcoord box_diff = ANNprQ[cut_dim] - cd_bnds[ANN_HI];		if (box_diff < 0)				// within bounds - ignore			box_diff = 0;										// distance to further box		new_dist = (ANNdist) ANN_SUM(box_dist,				ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));		if (child[ANN_LO] != KD_TRIVIAL)// enqueue if not trivial			ANNprBoxPQ->insert(new_dist, child[ANN_LO]);										// continue with closer child		child[ANN_HI]->ann_pri_search(box_dist);	}	ANN_SPL(1)							// one more splitting node visited	ANN_FLOP(8)							// increment floating ops}//----------------------------------------------------------------------//	kd_leaf::ann_pri_search - search points in a leaf node////		This is virtually identical to the ann_search for standard search.//----------------------------------------------------------------------void ANNkd_leaf::ann_pri_search(ANNdist box_dist){	register ANNdist dist;				// distance to data point	register ANNcoord* pp;				// data coordinate pointer	register ANNcoord* qq;				// query coordinate pointer	register ANNdist min_dist;			// distance to k-th closest point	register ANNcoord t;	register int d;	min_dist = ANNprPointMK->max_key(); // k-th smallest distance so far	for (int i = 0; i < n_pts; i++) {	// check points in bucket		pp = ANNprPts[bkt[i]];			// first coord of next data point		qq = ANNprQ;					// first coord of query point		dist = 0;		for(d = 0; d < ANNprDim; d++) {			ANN_COORD(1)				// one more coordinate hit			ANN_FLOP(4)					// increment floating ops			t = *(qq++) - *(pp++);		// compute length and adv coordinate										// exceeds dist to k-th smallest?			if( (dist = ANN_SUM(dist, ANN_POW(t))) > min_dist) {				break;			}		}		if (d >= ANNprDim &&					// among the k best?		   (ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem												// add it to the list			ANNprPointMK->insert(dist, bkt[i]);			min_dist = ANNprPointMK->max_key();		}	}	ANN_LEAF(1)							// one more leaf node visited	ANN_PTS(n_pts)						// increment points visited	ANNptsVisited += n_pts;				// increment number of points visited}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -