📄 kd_tree.cpp
字号:
//----------------------------------------------------------------------// File: kd_tree.cpp// Programmer: Sunil Arya and David Mount// Description: Basic methods for kd-trees.// Last modified: 01/04/05 (Version 1.0)//----------------------------------------------------------------------// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and// David Mount. All Rights Reserved.// // This software and related documentation is part of the Approximate// Nearest Neighbor Library (ANN). This software is provided under// the provisions of the Lesser GNU Public License (LGPL). See the// file ../ReadMe.txt for further information.// // The University of Maryland (U.M.) and the authors make no// representations about the suitability or fitness of this software for// any purpose. It is provided "as is" without express or implied// warranty.//----------------------------------------------------------------------// History:// Revision 0.1 03/04/98// Initial release// Revision 1.0 04/01/05// Increased aspect ratio bound (ANN_AR_TOOBIG) from 100 to 1000.// Fixed leaf counts to count trivial leaves.// Added optional pa, pi arguments to Skeleton kd_tree constructor// for use in load constructor.// Added annClose() to eliminate KD_TRIVIAL memory leak.//----------------------------------------------------------------------#include "kd_tree.h" // kd-tree declarations#include "kd_split.h" // kd-tree splitting rules#include "kd_util.h" // kd-tree utilities#include <ANN/ANNperf.h> // performance evaluation//----------------------------------------------------------------------// Global data//// For some splitting rules, especially with small bucket sizes,// it is possible to generate a large number of empty leaf nodes.// To save storage we allocate a single trivial leaf node which// contains no points. For messy coding reasons it is convenient// to have it reference a trivial point index.//// KD_TRIVIAL is allocated when the first kd-tree is created. It// must *never* deallocated (since it may be shared by more than// one tree).//----------------------------------------------------------------------static int IDX_TRIVIAL[] = {0}; // trivial point indexANNkd_leaf *KD_TRIVIAL = NULL; // trivial leaf node//----------------------------------------------------------------------// Printing the kd-tree // These routines print a kd-tree in reverse inorder (high then// root then low). (This is so that if you look at the output// from the right side it appear from left to right in standard// inorder.) When outputting leaves we output only the point// indices rather than the point coordinates. There is an option// to print the point coordinates separately.//// The tree printing routine calls the printing routines on the// individual nodes of the tree, passing in the level or depth// in the tree. The level in the tree is used to print indentation// for readability.//----------------------------------------------------------------------void ANNkd_split::print( // print splitting node int level, // depth of node in tree ostream &out) // output stream{ child[ANN_HI]->print(level+1, out); // print high child out << " "; for (int i = 0; i < level; i++) // print indentation out << ".."; out << "Split cd=" << cut_dim << " cv=" << cut_val; out << " lbnd=" << cd_bnds[ANN_LO]; out << " hbnd=" << cd_bnds[ANN_HI]; out << "\n"; child[ANN_LO]->print(level+1, out); // print low child}void ANNkd_leaf::print( // print leaf node int level, // depth of node in tree ostream &out) // output stream{ out << " "; for (int i = 0; i < level; i++) // print indentation out << ".."; if (this == KD_TRIVIAL) { // canonical trivial leaf node out << "Leaf (trivial)\n"; } else{ out << "Leaf n=" << n_pts << " <"; for (int j = 0; j < n_pts; j++) { out << bkt[j]; if (j < n_pts-1) out << ","; } out << ">\n"; }}void ANNkd_tree::Print( // print entire tree ANNbool with_pts, // print points as well? ostream &out) // output stream{ out << "ANN Version " << ANNversion << "\n"; if (with_pts) { // print point coordinates out << " Points:\n"; for (int i = 0; i < n_pts; i++) { out << "\t" << i << ": "; annPrintPt(pts[i], dim, out); out << "\n"; } } if (root == NULL) // empty tree? out << " Null tree.\n"; else { root->print(0, out); // invoke printing at root }}//----------------------------------------------------------------------// kd_tree statistics (for performance evaluation)// This routine compute various statistics information for// a kd-tree. It is used by the implementors for performance// evaluation of the data structure.//----------------------------------------------------------------------#define MAX(a,b) ((a) > (b) ? (a) : (b))void ANNkdStats::merge(const ANNkdStats &st) // merge stats from child { n_lf += st.n_lf; n_tl += st.n_tl; n_spl += st.n_spl; n_shr += st.n_shr; depth = MAX(depth, st.depth); sum_ar += st.sum_ar;}//----------------------------------------------------------------------// Update statistics for nodes//----------------------------------------------------------------------const double ANN_AR_TOOBIG = 1000; // too big an aspect ratiovoid ANNkd_leaf::getStats( // get subtree statistics int dim, // dimension of space ANNkdStats &st, // stats (modified) ANNorthRect &bnd_box) // bounding box{ st.reset(); st.n_lf = 1; // count this leaf if (this == KD_TRIVIAL) st.n_tl = 1; // count trivial leaf double ar = annAspectRatio(dim, bnd_box); // aspect ratio of leaf // incr sum (ignore outliers) st.sum_ar += float(ar < ANN_AR_TOOBIG ? ar : ANN_AR_TOOBIG);}void ANNkd_split::getStats( // get subtree statistics int dim, // dimension of space ANNkdStats &st, // stats (modified) ANNorthRect &bnd_box) // bounding box{ ANNkdStats ch_stats; // stats for children // get stats for low child ANNcoord hv = bnd_box.hi[cut_dim]; // save box bounds bnd_box.hi[cut_dim] = cut_val; // upper bound for low child ch_stats.reset(); // reset child[ANN_LO]->getStats(dim, ch_stats, bnd_box); st.merge(ch_stats); // merge them bnd_box.hi[cut_dim] = hv; // restore bound // get stats for high child ANNcoord lv = bnd_box.lo[cut_dim]; // save box bounds bnd_box.lo[cut_dim] = cut_val; // lower bound for high child ch_stats.reset(); // reset child[ANN_HI]->getStats(dim, ch_stats, bnd_box); st.merge(ch_stats); // merge them bnd_box.lo[cut_dim] = lv; // restore bound st.depth++; // increment depth st.n_spl++; // increment number of splits}//----------------------------------------------------------------------// getStats// Collects a number of statistics related to kd_tree or// bd_tree.//----------------------------------------------------------------------void ANNkd_tree::getStats( // get tree statistics ANNkdStats &st) // stats (modified){ st.reset(dim, n_pts, bkt_size); // reset stats // create bounding box ANNorthRect bnd_box(dim, bnd_box_lo, bnd_box_hi); if (root != NULL) { // if nonempty tree root->getStats(dim, st, bnd_box); // get statistics st.avg_ar = st.sum_ar / st.n_lf; // average leaf asp ratio }}//----------------------------------------------------------------------// kd_tree destructor// The destructor just frees the various elements that were// allocated in the construction process.//----------------------------------------------------------------------ANNkd_tree::~ANNkd_tree() // tree destructor{ if (root != NULL) delete root; if (pidx != NULL) delete [] pidx; if (bnd_box_lo != NULL) annDeallocPt(bnd_box_lo); if (bnd_box_hi != NULL) annDeallocPt(bnd_box_hi);}//----------------------------------------------------------------------// This is called with all use of ANN is finished. It eliminates the// minor memory leak caused by the allocation of KD_TRIVIAL.//----------------------------------------------------------------------void annClose() // close use of ANN{ if (KD_TRIVIAL != NULL) { delete KD_TRIVIAL; KD_TRIVIAL = NULL; }}//----------------------------------------------------------------------// kd_tree constructors// There is a skeleton kd-tree constructor which sets up a// trivial empty tree. The last optional argument allows// the routine to be passed a point index array which is// assumed to be of the proper size (n). Otherwise, one is// allocated and initialized to the identity. Warning: In// either case the destructor will deallocate this array.//// As a kludge, we need to allocate KD_TRIVIAL if one has not// already been allocated. (This is because I'm too dumb to// figure out how to cause a pointer to be allocated at load// time.)//----------------------------------------------------------------------void ANNkd_tree::SkeletonTree( // construct skeleton tree int n, // number of points int dd, // dimension int bs, // bucket size ANNpointArray pa, // point array ANNidxArray pi) // point indices{ dim = dd; // initialize basic elements n_pts = n; bkt_size = bs; pts = pa; // initialize points array root = NULL; // no associated tree yet if (pi == NULL) { // point indices provided? pidx = new ANNidx[n]; // no, allocate space for point indices for (int i = 0; i < n; i++) { pidx[i] = i; // initially identity } } else { pidx = pi; // yes, use them } bnd_box_lo = bnd_box_hi = NULL; // bounding box is nonexistent if (KD_TRIVIAL == NULL) // no trivial leaf node yet? KD_TRIVIAL = new ANNkd_leaf(0, IDX_TRIVIAL); // allocate it}ANNkd_tree::ANNkd_tree( // basic constructor int n, // number of points int dd, // dimension int bs) // bucket size{ SkeletonTree(n, dd, bs); } // construct skeleton tree//----------------------------------------------------------------------// rkd_tree - recursive procedure to build a kd-tree//// Builds a kd-tree for points in pa as indexed through the// array pidx[0..n-1] (typically a subarray of the array used in// the top-level call). This routine permutes the array pidx,// but does not alter pa[].//// The construction is based on a standard algorithm for constructing// the kd-tree (see Friedman, Bentley, and Finkel, ``An algorithm for// finding best matches in logarithmic expected time,'' ACM Transactions// on Mathematical Software, 3(3):209-226, 1977). The procedure// operates by a simple divide-and-conquer strategy, which determines// an appropriate orthogonal cutting plane (see below), and splits// the points. When the number of points falls below the bucket size,// we simply store the points in a leaf node's bucket.//// One of the arguments is a pointer to a splitting routine,// whose prototype is:// // void split(// ANNpointArray pa, // complete point array// ANNidxArray pidx, // point array (permuted on return)// ANNorthRect &bnds, // bounds of current cell// int n, // number of points// int dim, // dimension of space// int &cut_dim, // cutting dimension// ANNcoord &cut_val, // cutting value// int &n_lo) // no. of points on low side of cut//// This procedure selects a cutting dimension and cutting value,// partitions pa about these values, and returns the number of// points on the low side of the cut.//----------------------------------------------------------------------ANNkd_ptr rkd_tree( // recursive construction of kd-tree ANNpointArray pa, // point array ANNidxArray pidx, // point indices to store in subtree int n, // number of points int dim, // dimension of space int bsp, // bucket space ANNorthRect &bnd_box, // bounding box for current node ANNkd_splitter splitter) // splitting routine{ if (n <= bsp) { // n small, make a leaf node if (n == 0) // empty leaf node return KD_TRIVIAL; // return (canonical) empty leaf else // construct the node and return return new ANNkd_leaf(n, pidx); } else { // n large, make a splitting node int cd; // cutting dimension ANNcoord cv; // cutting value int n_lo; // number on low side of cut ANNkd_node *lo, *hi; // low and high children // invoke splitting procedure (*splitter)(pa, pidx, bnd_box, n, dim, cd, cv, n_lo); ANNcoord lv = bnd_box.lo[cd]; // save bounds for cutting dimension ANNcoord hv = bnd_box.hi[cd]; bnd_box.hi[cd] = cv; // modify bounds for left subtree lo = rkd_tree( // build left subtree pa, pidx, n_lo, // ...from pidx[0..n_lo-1] dim, bsp, bnd_box, splitter); bnd_box.hi[cd] = hv; // restore bounds bnd_box.lo[cd] = cv; // modify bounds for right subtree hi = rkd_tree( // build right subtree pa, pidx + n_lo, n-n_lo,// ...from pidx[n_lo..n-1] dim, bsp, bnd_box, splitter); bnd_box.lo[cd] = lv; // restore bounds // create the splitting node ANNkd_split *ptr = new ANNkd_split(cd, cv, lv, hv, lo, hi); return ptr; // return pointer to this node }} //----------------------------------------------------------------------// kd-tree constructor// This is the main constructor for kd-trees given a set of points.// It first builds a skeleton tree, then computes the bounding box// of the data points, and then invokes rkd_tree() to actually// build the tree, passing it the appropriate splitting routine.//----------------------------------------------------------------------ANNkd_tree::ANNkd_tree( // construct from point array ANNpointArray pa, // point array (with at least n pts) int n, // number of points int dd, // dimension int bs, // bucket size ANNsplitRule split) // splitting method{ SkeletonTree(n, dd, bs); // set up the basic stuff pts = pa; // where the points are if (n == 0) return; // no points--no sweat ANNorthRect bnd_box(dd); // bounding box for points annEnclRect(pa, pidx, n, dd, bnd_box);// construct bounding rectangle // copy to tree structure bnd_box_lo = annCopyPt(dd, bnd_box.lo); bnd_box_hi = annCopyPt(dd, bnd_box.hi); switch (split) { // build by rule case ANN_KD_STD: // standard kd-splitting rule root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, kd_split); break; case ANN_KD_MIDPT: // midpoint split root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, midpt_split); break; case ANN_KD_FAIR: // fair split root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, fair_split); break; case ANN_KD_SUGGEST: // best (in our opinion) case ANN_KD_SL_MIDPT: // sliding midpoint split root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_midpt_split); break; case ANN_KD_SL_FAIR: // sliding fair split root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_fair_split); break; default: annError("Illegal splitting method", ANNabort); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -