📄 kd_fix_rad_search.cpp
字号:
//----------------------------------------------------------------------// File: kd_fix_rad_search.cpp// Programmer: Sunil Arya and David Mount// Description: Standard kd-tree fixed-radius kNN search// Last modified: 05/03/05 (Version 1.1)//----------------------------------------------------------------------// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and// David Mount. All Rights Reserved.// // This software and related documentation is part of the Approximate// Nearest Neighbor Library (ANN). This software is provided under// the provisions of the Lesser GNU Public License (LGPL). See the// file ../ReadMe.txt for further information.// // The University of Maryland (U.M.) and the authors make no// representations about the suitability or fitness of this software for// any purpose. It is provided "as is" without express or implied// warranty.//----------------------------------------------------------------------// History:// Revision 1.1 05/03/05// Initial release//----------------------------------------------------------------------#include "kd_fix_rad_search.h" // kd fixed-radius search decls//----------------------------------------------------------------------// Approximate fixed-radius k nearest neighbor search// The squared radius is provided, and this procedure finds the// k nearest neighbors within the radius, and returns the total// number of points lying within the radius.//// The method used for searching the kd-tree is a variation of the// nearest neighbor search used in kd_search.cpp, except that the// radius of the search ball is known. We refer the reader to that// file for the explanation of the recursive search procedure.//----------------------------------------------------------------------//----------------------------------------------------------------------// To keep argument lists short, a number of global variables// are maintained which are common to all the recursive calls.// These are given below.//----------------------------------------------------------------------int ANNkdFRDim; // dimension of spaceANNpoint ANNkdFRQ; // query pointANNdist ANNkdFRSqRad; // squared radius search bounddouble ANNkdFRMaxErr; // max tolerable squared errorANNpointArray ANNkdFRPts; // the pointsANNmin_k* ANNkdFRPointMK; // set of k closest pointsint ANNkdFRPtsVisited; // total points visitedint ANNkdFRPtsInRange; // number of points in the range//----------------------------------------------------------------------// annkFRSearch - fixed radius search for k nearest neighbors//----------------------------------------------------------------------int ANNkd_tree::annkFRSearch( ANNpoint q, // the query point ANNdist sqRad, // squared radius search bound int k, // number of near neighbors to return ANNidxArray nn_idx, // nearest neighbor indices (returned) ANNdistArray dd, // the approximate nearest neighbor double eps) // the error bound{ ANNkdFRDim = dim; // copy arguments to static equivs ANNkdFRQ = q; ANNkdFRSqRad = sqRad; ANNkdFRPts = pts; ANNkdFRPtsVisited = 0; // initialize count of points visited ANNkdFRPtsInRange = 0; // ...and points in the range ANNkdFRMaxErr = ANN_POW(1.0 + eps); ANN_FLOP(2) // increment floating op count ANNkdFRPointMK = new ANNmin_k(k); // create set for closest k points // search starting at the root root->ann_FR_search(annBoxDistance(q, bnd_box_lo, bnd_box_hi, dim)); for (int i = 0; i < k; i++) { // extract the k-th closest points if (dd != NULL) dd[i] = ANNkdFRPointMK->ith_smallest_key(i); if (nn_idx != NULL) nn_idx[i] = ANNkdFRPointMK->ith_smallest_info(i); } delete ANNkdFRPointMK; // deallocate closest point set return ANNkdFRPtsInRange; // return final point count}//----------------------------------------------------------------------// kd_split::ann_FR_search - search a splitting node// Note: This routine is similar in structure to the standard kNN// search. It visits the subtree that is closer to the query point// first. For fixed-radius search, there is no benefit in visiting// one subtree before the other, but we maintain the same basic// code structure for the sake of uniformity.//----------------------------------------------------------------------void ANNkd_split::ann_FR_search(ANNdist box_dist){ // check dist calc term condition if (ANNmaxPtsVisited != 0 && ANNkdFRPtsVisited > ANNmaxPtsVisited) return; // distance to cutting plane ANNcoord cut_diff = ANNkdFRQ[cut_dim] - cut_val; if (cut_diff < 0) { // left of cutting plane child[ANN_LO]->ann_FR_search(box_dist);// visit closer child first ANNcoord box_diff = cd_bnds[ANN_LO] - ANNkdFRQ[cut_dim]; if (box_diff < 0) // within bounds - ignore box_diff = 0; // distance to further box box_dist = (ANNdist) ANN_SUM(box_dist, ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff))); // visit further child if in range if (box_dist * ANNkdFRMaxErr <= ANNkdFRSqRad) child[ANN_HI]->ann_FR_search(box_dist); } else { // right of cutting plane child[ANN_HI]->ann_FR_search(box_dist);// visit closer child first ANNcoord box_diff = ANNkdFRQ[cut_dim] - cd_bnds[ANN_HI]; if (box_diff < 0) // within bounds - ignore box_diff = 0; // distance to further box box_dist = (ANNdist) ANN_SUM(box_dist, ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff))); // visit further child if close enough if (box_dist * ANNkdFRMaxErr <= ANNkdFRSqRad) child[ANN_LO]->ann_FR_search(box_dist); } ANN_FLOP(13) // increment floating ops ANN_SPL(1) // one more splitting node visited}//----------------------------------------------------------------------// kd_leaf::ann_FR_search - search points in a leaf node// Note: The unreadability of this code is the result of// some fine tuning to replace indexing by pointer operations.//----------------------------------------------------------------------void ANNkd_leaf::ann_FR_search(ANNdist box_dist){ register ANNdist dist; // distance to data point register ANNcoord* pp; // data coordinate pointer register ANNcoord* qq; // query coordinate pointer register ANNcoord t; register int d; for (int i = 0; i < n_pts; i++) { // check points in bucket pp = ANNkdFRPts[bkt[i]]; // first coord of next data point qq = ANNkdFRQ; // first coord of query point dist = 0; for(d = 0; d < ANNkdFRDim; d++) { ANN_COORD(1) // one more coordinate hit ANN_FLOP(5) // increment floating ops t = *(qq++) - *(pp++); // compute length and adv coordinate // exceeds dist to k-th smallest? if( (dist = ANN_SUM(dist, ANN_POW(t))) > ANNkdFRSqRad) { break; } } if (d >= ANNkdFRDim && // among the k best? (ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem // add it to the list ANNkdFRPointMK->insert(dist, bkt[i]); ANNkdFRPtsInRange++; // increment point count } } ANN_LEAF(1) // one more leaf node visited ANN_PTS(n_pts) // increment points visited ANNkdFRPtsVisited += n_pts; // increment number of points visited}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -