📄 kd_search.cpp
字号:
//----------------------------------------------------------------------// File: kd_search.cpp// Programmer: Sunil Arya and David Mount// Description: Standard kd-tree search// Last modified: 01/04/05 (Version 1.0)//----------------------------------------------------------------------// Copyright (c) 1997-2005 University of Maryland and Sunil Arya and// David Mount. All Rights Reserved.// // This software and related documentation is part of the Approximate// Nearest Neighbor Library (ANN). This software is provided under// the provisions of the Lesser GNU Public License (LGPL). See the// file ../ReadMe.txt for further information.// // The University of Maryland (U.M.) and the authors make no// representations about the suitability or fitness of this software for// any purpose. It is provided "as is" without express or implied// warranty.//----------------------------------------------------------------------// History:// Revision 0.1 03/04/98// Initial release// Revision 1.0 04/01/05// Changed names LO, HI to ANN_LO, ANN_HI//----------------------------------------------------------------------#include "kd_search.h" // kd-search declarations//----------------------------------------------------------------------// Approximate nearest neighbor searching by kd-tree search// The kd-tree is searched for an approximate nearest neighbor.// The point is returned through one of the arguments, and the// distance returned is the squared distance to this point.//// The method used for searching the kd-tree is an approximate// adaptation of the search algorithm described by Friedman,// Bentley, and Finkel, ``An algorithm for finding best matches// in logarithmic expected time,'' ACM Transactions on Mathematical// Software, 3(3):209-226, 1977).//// The algorithm operates recursively. When first encountering a// node of the kd-tree we first visit the child which is closest to// the query point. On return, we decide whether we want to visit// the other child. If the box containing the other child exceeds// 1/(1+eps) times the current best distance, then we skip it (since// any point found in this child cannot be closer to the query point// by more than this factor.) Otherwise, we visit it recursively.// The distance between a box and the query point is computed exactly// (not approximated as is often done in kd-tree), using incremental// distance updates, as described by Arya and Mount in ``Algorithms// for fast vector quantization,'' Proc. of DCC '93: Data Compression// Conference, eds. J. A. Storer and M. Cohn, IEEE Press, 1993,// 381-390.//// The main entry points is annkSearch() which sets things up and// then call the recursive routine ann_search(). This is a recursive// routine which performs the processing for one node in the kd-tree.// There are two versions of this virtual procedure, one for splitting// nodes and one for leaves. When a splitting node is visited, we// determine which child to visit first (the closer one), and visit// the other child on return. When a leaf is visited, we compute// the distances to the points in the buckets, and update information// on the closest points.//// Some trickery is used to incrementally update the distance from// a kd-tree rectangle to the query point. This comes about from// the fact that which each successive split, only one component// (along the dimension that is split) of the squared distance to// the child rectangle is different from the squared distance to// the parent rectangle.//----------------------------------------------------------------------//----------------------------------------------------------------------// To keep argument lists short, a number of global variables// are maintained which are common to all the recursive calls.// These are given below.//----------------------------------------------------------------------int ANNkdDim; // dimension of spaceANNpoint ANNkdQ; // query pointdouble ANNkdMaxErr; // max tolerable squared errorANNpointArray ANNkdPts; // the pointsANNmin_k *ANNkdPointMK; // set of k closest points//----------------------------------------------------------------------// annkSearch - search for the k nearest neighbors//----------------------------------------------------------------------void ANNkd_tree::annkSearch( ANNpoint q, // the query point int k, // number of near neighbors to return ANNidxArray nn_idx, // nearest neighbor indices (returned) ANNdistArray dd, // the approximate nearest neighbor double eps) // the error bound{ ANNkdDim = dim; // copy arguments to static equivs ANNkdQ = q; ANNkdPts = pts; ANNptsVisited = 0; // initialize count of points visited if (k > n_pts) { // too many near neighbors? annError("Requesting more near neighbors than data points", ANNabort); } ANNkdMaxErr = ANN_POW(1.0 + eps); ANN_FLOP(2) // increment floating op count ANNkdPointMK = new ANNmin_k(k); // create set for closest k points // search starting at the root root->ann_search(annBoxDistance(q, bnd_box_lo, bnd_box_hi, dim)); for (int i = 0; i < k; i++) { // extract the k-th closest points dd[i] = ANNkdPointMK->ith_smallest_key(i); nn_idx[i] = ANNkdPointMK->ith_smallest_info(i); } delete ANNkdPointMK; // deallocate closest point set}//----------------------------------------------------------------------// kd_split::ann_search - search a splitting node//----------------------------------------------------------------------void ANNkd_split::ann_search(ANNdist box_dist){ // check dist calc term condition if (ANNmaxPtsVisited != 0 && ANNptsVisited > ANNmaxPtsVisited) return; // distance to cutting plane ANNcoord cut_diff = ANNkdQ[cut_dim] - cut_val; if (cut_diff < 0) { // left of cutting plane child[ANN_LO]->ann_search(box_dist);// visit closer child first ANNcoord box_diff = cd_bnds[ANN_LO] - ANNkdQ[cut_dim]; if (box_diff < 0) // within bounds - ignore box_diff = 0; // distance to further box box_dist = (ANNdist) ANN_SUM(box_dist, ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff))); // visit further child if close enough if (box_dist * ANNkdMaxErr < ANNkdPointMK->max_key()) child[ANN_HI]->ann_search(box_dist); } else { // right of cutting plane child[ANN_HI]->ann_search(box_dist);// visit closer child first ANNcoord box_diff = ANNkdQ[cut_dim] - cd_bnds[ANN_HI]; if (box_diff < 0) // within bounds - ignore box_diff = 0; // distance to further box box_dist = (ANNdist) ANN_SUM(box_dist, ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff))); // visit further child if close enough if (box_dist * ANNkdMaxErr < ANNkdPointMK->max_key()) child[ANN_LO]->ann_search(box_dist); } ANN_FLOP(10) // increment floating ops ANN_SPL(1) // one more splitting node visited}//----------------------------------------------------------------------// kd_leaf::ann_search - search points in a leaf node// Note: The unreadability of this code is the result of// some fine tuning to replace indexing by pointer operations.//----------------------------------------------------------------------void ANNkd_leaf::ann_search(ANNdist box_dist){ register ANNdist dist; // distance to data point register ANNcoord* pp; // data coordinate pointer register ANNcoord* qq; // query coordinate pointer register ANNdist min_dist; // distance to k-th closest point register ANNcoord t; register int d; min_dist = ANNkdPointMK->max_key(); // k-th smallest distance so far for (int i = 0; i < n_pts; i++) { // check points in bucket pp = ANNkdPts[bkt[i]]; // first coord of next data point qq = ANNkdQ; // first coord of query point dist = 0; for(d = 0; d < ANNkdDim; d++) { ANN_COORD(1) // one more coordinate hit ANN_FLOP(4) // increment floating ops t = *(qq++) - *(pp++); // compute length and adv coordinate // exceeds dist to k-th smallest? if( (dist = ANN_SUM(dist, ANN_POW(t))) > min_dist) { break; } } if (d >= ANNkdDim && // among the k best? (ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem // add it to the list ANNkdPointMK->insert(dist, bkt[i]); min_dist = ANNkdPointMK->max_key(); } } ANN_LEAF(1) // one more leaf node visited ANN_PTS(n_pts) // increment points visited ANNptsVisited += n_pts; // increment number of points visited}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -