⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gaussian.html

📁 一个关于数据聚类和模式识别的程序,在生物化学,化学中因该都可以用到.希望对大家有用,谢谢支持
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"                "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head>  <title>Description of gaussian</title>  <meta name="keywords" content="gaussian">  <meta name="description" content="gaussian: Multi-dimensional Gaussian propability density function">  <meta http-equiv="Content-Type" content="text/html; charset=big5">  <meta name="generator" content="m2html &copy; 2003 Guillaume Flandin">  <meta name="robots" content="index, follow">  <link type="text/css" rel="stylesheet" href="../m2html.css"></head><body><a name="_top"></a><div><a href="../index.html">Home</a> &gt;  <a href="index.html">dcpr</a> &gt; gaussian.m</div><!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="0" src="../left.png">&nbsp;Master index</a></td><td align="right"><a href="index.html">Index for dcpr&nbsp;<img alt=">" border="0" src="../right.png"></a></td></tr></table>--><h1>gaussian</h1><h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>gaussian: Multi-dimensional Gaussian propability density function</strong></div><h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="box"><strong>function out = gaussian(data, gParam); </strong></div><h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2><div class="fragment"><pre class="comment"> gaussian: Multi-dimensional Gaussian propability density function
    Usage: out = gaussian(data, gParam)
        data: d x n data matrix, representing n data vector of dimension d
        gParam.mu: d x 1 vector
        gParam.sigma: covariance matrix of 3 possible sizes
            1 x 1: scalar times an identity matrix
            d x 1: diagonal
            d x d: full
        out: 1 x n vector

    Type &quot;gaussian&quot; for a self demo.

    For example:

        gParam.mu = [0; 0];
        gParam.sigma = [9 3; 3, 4];
        bound = 8;
        pointNum = 31;
        x = linspace(-bound, bound, pointNum);
        y = linspace(-bound, bound, pointNum);
        [xx, yy] = meshgrid(x, y);
        data = [xx(:), yy(:)]';
        out = gaussian(data, gParam);
        zz = reshape(out, pointNum, pointNum);
        subplot(2,2,1);
        mesh(xx, yy, zz);
        axis([-inf inf -inf inf -inf inf]);
        set(gca, 'box', 'on');
        subplot(2,2,2);
        contour(xx, yy, zz, 15);
        axis image;</pre></div><!-- crossreference --><h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="0" src="../up.png"></a></h2>This function calls:<ul style="list-style-image:url(../matlabicon.gif)"></ul>This function is called by:<ul style="list-style-image:url(../matlabicon.gif)"><li><a href="gaussianLog.html" class="code" title="function out = gaussianLog(data, gaussianParam, gConst);">gaussianLog</a>	gaussianLog: Multi-dimensional log Gaussian propability density function</li><li><a href="gaussianMle.html" class="code" title="function gaussianParam = gaussianMle(feature, plotOpt)">gaussianMle</a>	mleGaussian: Maximum likelihood estimator for Gaussian distribution</li><li><a href="gaussianSimilarity.html" class="code" title="function similarity = gaussianSimilarity(x, binNum, plotOpt)">gaussianSimilarity</a>	Evaluation of a PDF to see if it is close to Gaussian distribution</li><li><a href="gmmTrainDemo1d.html" class="code" title="">gmmTrainDemo1d</a>	Example of using GMM (gaussian mixture model) for 1-D data</li><li><a href="interpGauss.html" class="code" title="function finalOutput=interpGauss(x, sampleData)">interpGauss</a>	INTERPGAUSS	?H normalized gaussian basis function ???i??

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -