⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lda_bb.m

📁 一个关于数据聚类和模式识别的程序,在生物化学,化学中因该都可以用到.希望对大家有用,谢谢支持
💻 M
字号:
function [newSample, discrim_vec] = lda(sample, discrim_vec_n)
%LDA Linear discriminant analysis
%	Usage:
%	[NEWSAMPLE, DISCRIM_VEC] = lda(SAMPLE, DISCRIM_VEC_N)
%	SAMPLE: Sample data with class information
%		(Each row of SAMPLE is a sample point, with the 
%		last column being the class label ranging from 1 to
%		no. of classes.)
%	DISCRIM_VEC_N: No. of discriminant vectors
%	NEWSAMPLE: new sample after projection
%
%	Reference:
%	J. Duchene and S. Leclercq, "An Optimal Transformation for
%	Discriminant Principal Component Analysis," IEEE Trans. on
%	Pattern Analysis and Machine Intelligence,
%	Vol. 10, No 6, November 1988
%
%	Type "lda" for a self-demo.

%	Roger Jang, 990829

if nargin == 0, selfdemo; return; end
if nargin < 2, discrim_vec_n = size(sample,2)-1; end

% ====== Initialization
data_n = size(sample, 1);
feature_n = size(sample,2)-1;
featureMatrix = sample(:, 1:end-1); 
classLabel = sample(:, end);
[diffClassLabel, classSize] = countele(classLabel);
class_n = length(diffClassLabel);
sampleMean = mean(featureMatrix);

% ====== Compute B and W
% ====== B: between-class scatter matrix
% ====== W:  within-class scatter matrix
% MMM = \sum_k m_k*mu_k*mu_k^T
MMM = zeros(feature_n, feature_n);
for i = 1:class_n,
	index = find(classLabel==diffClassLabel(i));
	classMean = mean(featureMatrix(index, :));
	MMM = MMM + length(index)*classMean'*classMean;
end
W = featureMatrix'*featureMatrix - MMM;
B = MMM - data_n*sampleMean'*sampleMean;

% ====== Find the best discriminant vectors
invW = inv(W);
Q = invW*B;
D = [];
for i = 1:discrim_vec_n,
	[eigVec, eigVal] = eig(Q);
	[maxEigVal, index] = max(abs(diag(eigVal)));  
	D = [D, eigVec(:, index)];	% Each col of D is a eigenvector
	Q = (eye(feature_n)-invW*D*inv(D'*invW*D)*D')*invW*B;
end
newSample = [featureMatrix*D(:,1:discrim_vec_n) classLabel]; 
discrim_vec = D;

%---------------------------------------------------
function selfdemo
% ====== Self demo using IRIS dataset
% ====== 1. Plot IRIS data after LDA for dimension reduction to 2D
load iris.dat
[data, discrim_vec] = feval(mfilename, iris);
index1 = find(iris(:,5)==1);
index2 = find(iris(:,5)==2);
index3 = find(iris(:,5)==3);
figure;
plot(data(index1, 1), data(index1, 2), '*', ...
     data(index2, 1), data(index2, 2), 'o', ...
     data(index3, 1), data(index3, 2), 'x');
legend('Class 1', 'Class 2', 'Class 3');
title('LDA projection of IRIS data onto the first 2 discriminant vectors');
looError = looknn([data(:, 1:2) iris(:, end)]);
xlabel(['Leave-one-out misclassification count = ', int2str(looError)]);
axis equal; axis tight;
 
figure;
plot(data(index1, 3), data(index1, 4), '*', ...
     data(index2, 3), data(index2, 4), 'o', ...
     data(index3, 3), data(index3, 4), 'x');
legend('Class 1', 'Class 2', 'Class 3');
title('LDA projection of IRIS data onto the last 2 discriminant vectors');
looError = looknn([data(:, 3:4) iris(:, end)]);
xlabel(['Leave-one-out misclassification count = ', int2str(looError)]);
axis equal; axis tight;

% ====== 2. Leave-one-out errors after using LDA for dimension reduction
load iris.dat;
dataNum = size(iris, 1);

fprintf('Leave-one-out analysis:\n');
fprintf('\tFull data:\n');
wrong = looknn(iris); 
correct = size(iris, 1) - wrong;
fprintf('\t\tLOO error count = %g\n', wrong);
fprintf('\t\tRecognition rate = %g/%g = %5.2f%%\n', correct, dataNum,...
	correct/dataNum*100);

newdata = lda(iris);

for n = 4:-1:1,
	fprintf('\tPartial data after LDA (dimension = %g):\n', n);
	wrong = looknn([newdata(:, 1:n) newdata(:, end)]); 
	correct = size(iris, 1) - wrong;
	fprintf('\t\tLOO error count = %g\n', wrong);
	fprintf('\t\tRecognition rate = %g/%g = %5.2f%%\n', correct, dataNum,...
		correct/dataNum*100);
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -