📄 edj5304ba.vhd
字号:
SIGNAL CK_COUNT : natural := 0; --burst sequences TYPE sequence IS ARRAY (0 TO 7) OF integer RANGE -7 TO 7; TYPE seqtab IS ARRAY (0 TO 7) OF sequence; CONSTANT seq0 : sequence := (0, 1, 2, 3, 4, 5, 6, 7); CONSTANT seq1 : sequence := (0, 1, 2,-1, 4, 5, 6, 3); CONSTANT seq2 : sequence := (0, 1,-2,-1, 4, 5, 2, 3); CONSTANT seq3 : sequence := (0,-3,-2,-1, 4, 1, 2, 3); CONSTANT seq4 : sequence := (0, 1, 2, 3,-4,-3,-2,-1); CONSTANT seq5 : sequence := (0, 1, 2,-1,-4,-3,-2,-5); CONSTANT seq6 : sequence := (0, 1,-2,-1,-4,-3,-6,-5); CONSTANT seq7 : sequence := (0,-3,-2,-1,-4,-7,-6,-5); CONSTANT seq : seqtab := (seq0, seq1, seq2, seq3, seq4, seq5, seq6, seq7); CONSTANT inl0 : sequence := (0, 1, 2, 3, 4, 5, 6, 7); CONSTANT inl1 : sequence := (0,-1, 2, 1, 4, 3, 6, 5); CONSTANT inl2 : sequence := (0, 1,-2,-1, 4, 5, 2, 3); CONSTANT inl3 : sequence := (0,-1,-2,-3, 4, 3, 2, 1); CONSTANT inl4 : sequence := (0, 1, 2, 3,-4,-3,-2,-1); CONSTANT inl5 : sequence := (0,-1, 2, 1,-4,-5,-2,-3); CONSTANT inl6 : sequence := (0, 1,-2,-1,-4,-3,-6,-5); CONSTANT inl7 : sequence := (0,-1,-2,-3,-4,-5,-6,-7); CONSTANT inl : seqtab := (inl0, inl1, inl2, inl3, inl4, inl5, inl6, inl7); --memory definition TYPE MemStore IS ARRAY (0 TO MemSize) OF integer RANGE -2 TO MaxData; TYPE MemBlock IS ARRAY (0 TO BankNum) OF MemStore; SHARED VARIABLE Mem : MemBlock; --mode registers SHARED VARIABLE MR0 : std_logic_vector(15 DOWNTO 0) := (OTHERS => '0'); SHARED VARIABLE MR1 : std_logic_vector(15 DOWNTO 0); SHARED VARIABLE MR2 : std_logic_vector(15 DOWNTO 0); SHARED VARIABLE MR3 : std_logic_vector(15 DOWNTO 0); SHARED VARIABLE burst_len : natural RANGE 4 TO 8;--burst length SHARED VARIABLE active_forbid : boolean := FALSE;--more than 4 active --commands during tFAW --bank, row and column of scheduled read or write operation SHARED VARIABLE current_bank : natural RANGE 0 TO BankNum; SHARED VARIABLE current_row : natural RANGE 0 TO RowNum; SHARED VARIABLE current_column : natural RANGE 0 TO ColNum; --bank, row and column of read operation that starts SHARED VARIABLE read_bank : natural RANGE 0 TO BankNum; SHARED VARIABLE read_row : natural RANGE 0 TO RowNum; SHARED VARIABLE read_column : natural RANGE 0 TO ColNum; -- WRITE LEVELING PROCEDURE SIGNAL WL_on : boolean := FALSE;--Write Leveling enabled SHARED VARIABLE ODTLOFF : boolean := FALSE; TYPE write_sch_type IS ARRAY (0 TO 10) OF boolean; TYPE write_sch_bank_type IS ARRAY (0 TO BankNum) OF write_sch_type; --all scheduled reads within all banks SHARED VARIABLE read_sch : write_sch_bank_type := (OTHERS => (OTHERS => FALSE)); --reads that should be preceeded by preamble SHARED VARIABLE preamble : write_sch_bank_type := (OTHERS => (OTHERS => TRUE)); TYPE wait_read_type IS ARRAY (0 TO 10) OF std_ulogic; TYPE wait_read_bank_type IS ARRAY (0 TO BankNum) OF wait_read_type; --wait_read triggers process that counts remaining cycles to the --beggining of scheduled read when aditive latency has elapsed, and --read_delay keeps information of number of remaining cycles SIGNAL wait_read : wait_read_bank_type; SHARED VARIABLE read_delay : natural RANGE 0 TO 10; --needed for check if all rows were refreshed during refresh period SIGNAL Ref_per_start : std_ulogic := '0'; SIGNAL Ref_per_expired : std_ulogic := '0'; SHARED VARIABLE CK_rise : time := 0 ns; SHARED VARIABLE CK_period : time := 0 ns; TYPE Bank_state_type IS (precharged, refreshing, MRsetting, activating, active, reading, readingAP, writting, writtingAP, precharging, prechall,ZQ_calib); TYPE Bank_state_array_type IS ARRAY (0 TO BankNum) OF Bank_state_type; SHARED VARIABLE Curr_bank_state : Bank_state_array_type; SHARED VARIABLE Next_bank_state : Bank_state_array_type; SHARED VARIABLE SR_cond : boolean := FALSE;--self refresh can be entered SIGNAL SelfRefresh : boolean := FALSE;--self refresh active --Partial self refresh active SIGNAL PartialSelfRefresh : boolean := FALSE; SIGNAL SR_exit : boolean := FALSE;--CKE high, self refresh exit SHARED VARIABLE SR_enter_cycle : boolean := FALSE;--clock can be --turned off SIGNAL Pre_PD : boolean := FALSE;--precharge power down active SIGNAL Act_PD : boolean := FALSE;--active power down active SHARED VARIABLE Read_Start : boolean := FALSE;--read burst in progress, SIGNAL ReadStart : boolean := FALSE; --no pd entry SIGNAL Reset : boolean := FALSE;--reset function active SIGNAL RST : std_logic := '1'; SHARED VARIABLE Reset_enter_cycle : boolean := FALSE;--clocks can be --turned off SIGNAL SimulationEnd : boolean := FALSE; SHARED VARIABLE mrs_cnt : natural; SIGNAL mrs_active : std_logic := '0'; SIGNAL preamble_check : boolean := FALSE; SIGNAL postamble_check : boolean := FALSE; FUNCTION bool_to_nat(tm : boolean) RETURN natural IS VARIABLE Temp : natural; BEGIN Temp := 0; IF tm THEN Temp := 1; END IF; RETURN Temp; END bool_to_nat; BEGIN RST <= RESETNeg AFTER 100 ns; CK_DLL: PROCESS(CKDiff) VARIABLE Previous : time := 0 ns; VARIABLE TmpPer : time := 0 ns; BEGIN IF rising_edge(CKDiff) THEN TmpPer := NOW - Previous; IF TmpPer > 0 ns THEN CKPeriod <= TmpPer; END IF; Previous := NOW; CKHalfPer <= CKPeriod / 2; CKDLLDelay <= CKPeriod + tpd_CK_DQ1; END IF; END PROCESS CK_DLL; CK_temp: PROCESS(CKDiff) -- generating internal clock from DLL BEGIN CKtemp <= NOT CKtemp AFTER CKHalfPer; END PROCESS CK_temp; CKInt <= TRANSPORT CKtemp AFTER CKDLLDelay; Clock_init: PROCESS(CK) BEGIN IF rising_edge(CK) AND NOT PoweredUp THEN CK_COUNT <= CK_COUNT + 1; END IF; END PROCESS Clock_init; Power_up: PROCESS(CK_stable,CK_COUNT) BEGIN IF CK_stable AND (CK_COUNT >= 5) AND NOT PoweredUp THEN PoweredUp <= TRUE; END IF; END PROCESS Power_up; Init_d: PROCESS(In_d) BEGIN IF In_d THEN Init_delay <= TRUE AFTER tdevice_tXPR; ELSE Init_delay <= FALSE; END IF; END PROCESS Init_d; Init_d1: PROCESS(In_d1) BEGIN IF In_d1 THEN Init_delay1 <= TRUE AFTER tdevice_tMRD; ELSE Init_delay1 <= FALSE; END IF; END PROCESS Init_d1; Init_d2: PROCESS(In_d2) BEGIN IF In_d2 THEN Init_delay2 <= TRUE AFTER tdevice_tZQINIT; ELSE Init_delay2 <= FALSE; END IF; END PROCESS Init_d2; Init_d3: PROCESS(In_d3) BEGIN IF In_d3 THEN Init_delay3 <= TRUE AFTER tdevice_tZQOPER; ELSE Init_delay3 <= FALSE; END IF; END PROCESS Init_d3; Init_d4: PROCESS(In_d4) BEGIN IF In_d4 THEN Init_delay4 <= TRUE AFTER tdevice_tZQCS; ELSE Init_delay4 <= FALSE; END IF; END PROCESS Init_d4; PROCESS (tMOD_in_tmp) BEGIN IF rising_edge(tMOD_in_tmp) THEN tMOD_out_tmp <= '0', '1' AFTER tdevice_tMOD; END IF; END PROCESS; DLLdelay: PROCESS(DLL_delay, CKDiff) VARIABLE cnt : natural; BEGIN IF rising_edge(DLL_delay) THEN cnt := 0; DLL_delay_elapsed <= FALSE; ELSIF rising_edge(CKDiff) AND NOT DLL_delay_elapsed THEN cnt := cnt + 1; IF cnt = 511 THEN DLL_delay_elapsed <= TRUE; END IF; END IF; END PROCESS DLLdelay; ---------------------------------------------------------------------------- -- Vital Behavior Process ---------------------------------------------------------------------------- VITALBehaviour: PROCESS(CKDiff, DQSDiff, DQSIn, DQIn, DM, ODT, CKE, CSNeg, RASNeg, CASNeg, WENeg, BAIn, AIn, RESETNeg) -- Timing Check Variables VARIABLE Tviol_DQ0_DQS : X01 := '0'; VARIABLE TD_DQ0_DQS : VitalTimingDataType; VARIABLE Tviol_DQ0_DQS1 : X01 := '0'; VARIABLE TD_DQ0_DQS1 : VitalTimingDataType; VARIABLE Tviol_DQ1_DQS : X01 := '0'; VARIABLE TD_DQ1_DQS : VitalTimingDataType; VARIABLE Tviol_DQ1_DQS1 : X01 := '0'; VARIABLE TD_DQ1_DQS1 : VitalTimingDataType; VARIABLE Tviol_DM0_DQS : X01 := '0'; VARIABLE TD_DM0_DQS : VitalTimingDataType; VARIABLE Tviol_DM0_DQS1 : X01 := '0'; VARIABLE TD_DM0_DQS1 : VitalTimingDataType; VARIABLE Tviol_DM1_DQS : X01 := '0'; VARIABLE TD_DM1_DQS : VitalTimingDataType; VARIABLE Tviol_DM1_DQS1 : X01 := '0'; VARIABLE TD_DM1_DQS1 : VitalTimingDataType;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -