📄 pls.m
字号:
function [theta,phi,lambda] = pls(X,Y,N)
% [theta,phi,lambda] = pls(X,Y,N)
% [theta,phi,lambda] = pls(X,Y)
%
% Partial Least Squares Regression (PLS) construction (simplified)
%
% Input parameters:
% - X: Input data block (k x n)
% - Y: Output data block (k x m)
% - N: Number of latent variables (optional)
% Return parameters:
% - theta: Input block eigenvectors
% - phi: Output block eigenvectors
% - lambda: Square roots of corresponding eigenvalues
%
% Heikki Hyotyniemi Dec 21, 2000
[kx,n] = size(X);
[ky,m] = size(Y);
NN = min(n,m);
if ky == kx
k = kx;
else
error('Incompatible input and output blocks');
return;
end
R = X'*Y/m;
[THETA,LAMBDA,PHI] = svd(R);
LAMBDA = abs(diag(LAMBDA));
%R = X'*Y*Y'*X/k^2;
%[THETA,LAMBDA] = eig(R);
%[LAMBDA,order] = sort(abs(diag(LAMBDA)));
%LAMBDA = flipud(sqrt(LAMBDA));
%THETA = THETA(:,flipud(order));
if nargin>2 & ~isnan(N) & ~isempty(N)
N = min(N,n);
N = min(N,m);
else
LAMBDA = LAMBDA(1:min(n,m));
N = askorder(LAMBDA);
end
theta = THETA(:,1:N);
phi = PHI(:,1:N);
lambda = LAMBDA(1:N);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -