📄 cr.m
字号:
function [theta,lambda] = cr(X,Y,alpha,N)
% [theta,lambda] = cr(X,Y,alpha,N)
% [theta,lambda] = cr(X,Y,alpha)
%
% Continuum regression.
%
% Input parameters:
% - X: Input data block (k x n)
% - Y: Output data block (k x m)
% - alpha: Continuum parameter: from 0 (PCR) to ~1 (MLR)
% - N: Dimension of the latent structure (optional)
% Return parameters:
% - theta: Latent vectors
% - lambda: Corresponding eigenvalues
%
% Heikki Hyotyniemi Sep.2, 2000
[kx,n] = size(X);
[ky,m] = size(Y);
NN = min(n,m);
if ky == kx
k = kx;
else
error('Incompatible input and output blocks');
return;
end
% Formally calculate
% R = X'*(Y*(Y'*Y)^(2*alpha-1)*Y')^(-2*alpha^2+alpha+1)*X/(k^(alpha+2));
% However, Y*(Y'*Y)^(2*alpha-1)*Y' is huge!
[U,S,V] = svd(Y); % Singular value decomposition
s = diag(diag(S(1:m,1:m)).^(alpha/(1-alpha+m*eps)));
u = U(:,1:m);
R = X'*u*s'*s*u'*X/(k^(1/(1-alpha+m*eps)));
[THETA,LAMBDA] = eig(R);
[LAMBDA,order] = sort(abs(diag(LAMBDA)));
LAMBDA = flipud(LAMBDA);
THETA = THETA(:,flipud(order));
if nargin<4 | isnan(N) | isinf(N) | isempty(N)
N = askorder(LAMBDA);
end
theta = THETA(:,1:N);
lambda = LAMBDA(1:N);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -