📄 rbfn.m
字号:
function [rbfmodel,error] = rbfn(X,Y,clusters,sigma)
% [rbfmodel,error] = rbfn(X,Y,clusters,sigma)
%
% Radial Basis Function regression model construction.
%
% Input parameters:
% - X: Input data block (k x n)
% - Y: Output data block (k x m)
% - clusters: Cluster index between 1 and N for all k samples,
% constructed by K-means ('km.m') or SOM
% - sigma: Distribution of the Gaussians
% Return parameters:
% - rbfmodel: Matrix containing the model in the form
% rbfmodel = [centers;sigmas;weights], where
% - centers: Vector (n x N) containing cluster centers
% - sigmas: Standard deviations in the clusters
% - weights: Mappings (m x N) from cluster to outputs
% - error: Prediction errors
%
% Heikki Hyotyniemi Feb.20, 2001
[kx,n] = size(X);
[ky,m] = size(Y);
if kx ~= ky, disp('Incompatible X and Y'); break;
else k = kx; end
N = max(clusters);
centers = zeros(n,N);
for i = 1:N
centers(:,i) = mean(X(find(clusters==i),:))';
end
dist2 = sum(X.*X,2)*ones(1,N) - 2*X*centers + ones(k,1)*sum(centers.*centers,1);
p = exp(-dist2/sigma);
p = p./(sum(p')'*ones(1,N));
F = mlr(p,Y);
error = Y - p*F;
rbfmodel = [centers',ones(N,1)*sigma,F];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -