📄 fda.m
字号:
function [theta,lambda] = fda(X,clusters,N)
% [theta,lambda] = fda(X,clusters,N)
% [theta,lambda] = fda(X,clusters)
%
% Fisher discriminant analysis.
%
% Input parameters:
% - X: Input data block (k x n)
% - clusters: Cluster index between 1 and N for all k samples,
% constructed for example by K-means ('km.m')
% - N: Number of discriminant axes (optional)
% Return parameters:
% - theta: Discriminant axes
% - lambda: Corresponding eigenvalues
%
% Heikki Hyotyniemi Feb.20, 2001
[k,n] = size(X);
NN = max(clusters);
centers = zeros(n,NN);
for i = 1:NN
centers(:,i) = mean(X(find(clusters==i),:))';
end
center = mean(X);
Rtotal = (X-ones(k,1)*center)'*(X-ones(k,1)*center)/k;
Rwithin = (X-centers(:,clusters)')'*(X-centers(:,clusters)')/k;
Rbetween = Rtotal - Rwithin;
[THETA,LAMBDA] = eig(Rbetween,Rwithin);
[LAMBDA,order] = sort(abs(diag(LAMBDA)));
LAMBDA = flipud(LAMBDA);
THETA = THETA(:,flipud(order));
if nargin<3 | isnan(N) | isinf(N) | isempty(N)
N = askorder(LAMBDA);
end
theta = THETA(:,1:N);
lambda = LAMBDA(1:N);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -