📄 rbfr.m
字号:
function [Yhat] = rbfr(X,rbfmodel)
% [Yhat] = rbfr(X,rbfmodel)
%
% Radial Basis Function regression.
%
% Input parameters:
% - X: Input data block (k x n)
% - rbfmodel: Matrix containing the model in the form
% rbfmodel = [centers;sigmas;weights], where
% - centers: Vector (n x N) containing cluster centers
% - sigmas: Optimized cluster standard deviations
% - weights: Mappings (m x N) from cluster to outputs
% Return parameters:
% - Yhat: Output data block (k x m)
%
% Heikki Hyotyniemi Feb.21, 2001
[k,n] = size(X);
[N,nm1] = size(rbfmodel);
m = nm1 - n -1;
centers = rbfmodel(:,1:n)';
sigmas = rbfmodel(:,n+1)';
F = rbfmodel(:,n+2:nm1);
dist2 = sum(X.*X,2)*ones(1,N) - 2*X*centers + ones(k,1)*sum(centers.*centers,1);
p = exp(-dist2./(ones(k,1)*sigmas));
p = p./(sum(p')'*ones(1,N));
Yhat = p*F;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -