📄 cca.m
字号:
function [theta,phi,lambda] = cca(X,Y,N)
% [theta,phi,lambda] = cca(X,Y,N)
% [theta,phi,lambda] = cca(X,Y)
%
% Canonical Correlation Analysis (CCA) model construction
%
% Input parameters:
% - X: Input data block (size k x n)
% - Y: Output data block (size k x m)
% - N: Number of latent variables (optional)
% Return parameters:
% - theta: Input block canonical variates
% - phi: Output block canonical variates
% - lambda: Canonical correlation coefficients
%
% Heikki Hyotyniemi Feb.12, 2000
[kx,n] = size(X);
[ky,m] = size(Y);
NN = min(n,m);
if ky == kx
k = kx;
else
error('Incompatible input and output blocks');
return;
end
V = [X,Y];
R = V'*V/k;
R11 = R(1:n,1:n);
R12 = R(1:n,n+1:n+m);
R22 = R(n+1:n+m,n+1:n+m);
if (min(abs(eig(R11)))<norm(R11)*n*eps)
disp('X block singular! Results may be inaccurate');
end
if (min(abs(eig(R22)))<norm(R22)*n*eps)
disp('Y block singular! Results may be inaccurate');
end
[THETA,LAMBDA] = eig(inv(R11)*R12*inv(R22)*R12');
[LAMBDA,order] = sort(abs(diag(LAMBDA)));
LAMBDA = flipud(LAMBDA);
THETA = THETA(:,flipud(order));
[PHI,LAMBDA] = eig(inv(R22)*R12'*inv(R11)*R12);
[LAMBDA,order] = sort(abs(diag(LAMBDA)));
LAMBDA = flipud(sqrt(LAMBDA));
PHI = PHI(:,flipud(order));
if nargin>2 & ~isnan(N) & ~isempty(N)
N = min(N,n);
N = min(N,m);
else
LAMBDA = LAMBDA(1:min(n,m));
N = askorder(LAMBDA);
end
theta = THETA(:,1:N);
phi = PHI(:,1:N);
lambda = LAMBDA(1:N);
theta = theta*inv(sqrt(diag(diag(theta'*R11*theta)))); % Scaling!
phi = phi*inv(sqrt(diag(diag(phi'*R22*phi))));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -