📄 autocovariance.m
字号:
function [ac,lg] = AutoCovariance(x,lag,method,pfa)%AutoCovariance: Estimates the signal autocovariance.%% [ac,lg] = AutoCovariance(x,lag,method,pf)%% x Input Signal% lag Length of lag (samples). Default=length(x).% method 'biased', 'unbiased' (default), 'fast'.% pf Plot flag: 0=none (default), 1=screen.%% ac Estimated autocovariance% lg X-axis lag%% AutoCovariance is a function that gives an unnormalized % covariance of a random stationary signal with itself. % The auto-covariance is defined as%% ac(m) = sum((x(m) - mean(x)).*(x(m+nx) - mean(x)))%% where m is the covariance index and nx is the the length of% signal x. The output is specified by the number of lags chosen,% so that the auto-covariance will have a maximum value at lag 0 % and will extend out to the number of lags chosen.%% The method chosen determines how the output will be normalized.% The 'unbiased' method is the most accurate, but slowest method,% and uses a normalization factor of 1/(nx-abs(m)). The 'biased'% method is also slow, but will give a positive definite output and% uses a normalization factor of 1./nx. The 'fast' method is the% least accurate method. It calculates the autocovariance by % taking the inverse fft of the squared power spectral density.% If no output argument is specified, the default will plot to the % screen. %% Example: Calculate the autocovariance of an ABP data segment with% a lag of 1000 and a biased output and plot the results to the % screen.%% load ABPICP.mat% x = abp(1:2000);% [ac,lg] = Autocovariance(x,1000,'biased',1);%% Shumway, Robert and Stoffer, David, "Time Series Analysis and Its% Applications," Springer, pp.15-37, 2000.%% Version 1.00 LJ%% See Also CrossCovariance, Autocorrelate, and CrossCorrelate.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -