📄 lmdif.c
字号:
wa2[1], &wa3[1]);/* on the first iteration and if mode is 1, scale according *//* to the norms of the columns of the initial jacobian. */ if (iter != 1) { goto L80; } if (mode == 2) { goto L60; } i__1 = n; for (j = 1; j <= i__1; ++j) { diag[j] = wa2[j]; if (wa2[j] == 0.) { diag[j] = 1.; }/* L50: */ }L60:/* on the first iteration, calculate the norm of the scaled x *//* and initialize the step bound delta. */ i__1 = n; for (j = 1; j <= i__1; ++j) { wa3[j] = diag[j] * x[j];/* L70: */ } xnorm = enorm(n, &wa3[1]); delta = factor * xnorm; if (delta == 0.) { delta = factor; }L80:/* form (q transpose)*fvec and store the first n components in *//* qtf. */ i__1 = m; for (i__ = 1; i__ <= i__1; ++i__) { wa4[i__] = fvec[i__];/* L90: */ } i__1 = n; for (j = 1; j <= i__1; ++j) { if (fjac[j + j * fjac_dim1] == 0.) { goto L120; } sum = 0.; i__2 = m; for (i__ = j; i__ <= i__2; ++i__) { sum += fjac[i__ + j * fjac_dim1] * wa4[i__];/* L100: */ } temp = -sum / fjac[j + j * fjac_dim1]; i__2 = m; for (i__ = j; i__ <= i__2; ++i__) { wa4[i__] += fjac[i__ + j * fjac_dim1] * temp;/* L110: */ }L120: fjac[j + j * fjac_dim1] = wa1[j]; qtf[j] = wa4[j];/* L130: */ }/* compute the norm of the scaled gradient. */ gnorm = 0.; if (fnorm == 0.) { goto L170; } i__1 = n; for (j = 1; j <= i__1; ++j) { l = ipvt[j]; if (wa2[l] == 0.) { goto L150; } sum = 0.; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { sum += fjac[i__ + j * fjac_dim1] * (qtf[i__] / fnorm);/* L140: */ }/* Computing MAX */ d__2 = gnorm, d__3 = fabs(sum / wa2[l]); gnorm = max(d__2,d__3);L150:/* L160: */ ; }L170:/* test for convergence of the gradient norm. */ if (gnorm <= gtol) { info = 4; } if (info != 0) { goto L300; }/* rescale if necessary. */ if (mode == 2) { goto L190; } i__1 = n; for (j = 1; j <= i__1; ++j) {/* Computing MAX */ d__1 = diag[j], d__2 = wa2[j]; diag[j] = max(d__1,d__2);/* L180: */ }L190:/* beginning of the inner loop. */L200:/* determine the levenberg-marquardt parameter. */ lmpar(n, &fjac[fjac_offset], ldfjac, &ipvt[1], &diag[1], &qtf[1], delta, &par, &wa1[1], &wa2[1], &wa3[1], &wa4[1]);/* store the direction p and x + p. calculate the norm of p. */ i__1 = n; for (j = 1; j <= i__1; ++j) { wa1[j] = -wa1[j]; wa2[j] = x[j] + wa1[j]; wa3[j] = diag[j] * wa1[j];/* L210: */ } pnorm = enorm(n, &wa3[1]);/* on the first iteration, adjust the initial step bound. */ if (iter == 1) { delta = min(delta,pnorm); }/* evaluate the function at x + p and calculate its norm. */ iflag = (*fcn)(p, m, n, &wa2[1], &wa4[1], 1); ++(*nfev); if (iflag < 0) { goto L300; } fnorm1 = enorm(m, &wa4[1]);/* compute the scaled actual reduction. */ actred = -1.; if (p1 * fnorm1 < fnorm) {/* Computing 2nd power */ d__1 = fnorm1 / fnorm; actred = 1. - d__1 * d__1; }/* compute the scaled predicted reduction and *//* the scaled directional derivative. */ i__1 = n; for (j = 1; j <= i__1; ++j) { wa3[j] = 0.; l = ipvt[j]; temp = wa1[l]; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { wa3[i__] += fjac[i__ + j * fjac_dim1] * temp;/* L220: */ }/* L230: */ } temp1 = enorm(n, &wa3[1]) / fnorm; temp2 = sqrt(par) * pnorm / fnorm;/* Computing 2nd power */ d__1 = temp1;/* Computing 2nd power */ d__2 = temp2; prered = d__1 * d__1 + d__2 * d__2 / p5;/* Computing 2nd power */ d__1 = temp1;/* Computing 2nd power */ d__2 = temp2; dirder = -(d__1 * d__1 + d__2 * d__2);/* compute the ratio of the actual to the predicted *//* reduction. */ ratio = 0.; if (prered != 0.) { ratio = actred / prered; }/* update the step bound. */ if (ratio > p25) { goto L240; } if (actred >= 0.) { temp = p5; } if (actred < 0.) { temp = p5 * dirder / (dirder + p5 * actred); } if (p1 * fnorm1 >= fnorm || temp < p1) { temp = p1; }/* Computing MIN */ d__1 = delta, d__2 = pnorm / p1; delta = temp * min(d__1,d__2); par /= temp; goto L260;L240: if (par != 0. && ratio < p75) { goto L250; } delta = pnorm / p5; par = p5 * par;L250:L260:/* test for successful iteration. */ if (ratio < p0001) { goto L290; }/* successful iteration. update x, fvec, and their norms. */ i__1 = n; for (j = 1; j <= i__1; ++j) { x[j] = wa2[j]; wa2[j] = diag[j] * x[j];/* L270: */ } i__1 = m; for (i__ = 1; i__ <= i__1; ++i__) { fvec[i__] = wa4[i__];/* L280: */ } xnorm = enorm(n, &wa2[1]); fnorm = fnorm1; ++iter;L290:/* tests for convergence. */ if (fabs(actred) <= ftol && prered <= ftol && p5 * ratio <= 1.) { info = 1; } if (delta <= xtol * xnorm) { info = 2; } if (fabs(actred) <= ftol && prered <= ftol && p5 * ratio <= 1. && info == 2) { info = 3; } if (info != 0) { goto L300; }/* tests for termination and stringent tolerances. */ if (*nfev >= maxfev) { info = 5; } if (fabs(actred) <= epsmch && prered <= epsmch && p5 * ratio <= 1.) { info = 6; } if (delta <= epsmch * xnorm) { info = 7; } if (gnorm <= epsmch) { info = 8; } if (info != 0) { goto L300; }/* end of the inner loop. repeat if iteration unsuccessful. */ if (ratio < p0001) { goto L200; }/* end of the outer loop. */ goto L30;L300:/* termination, either normal or user imposed. */ if (iflag < 0) { info = iflag; } iflag = 0; if (nprint > 0) { iflag = (*fcn)(p, m, n, &x[1], &fvec[1], 0); } return info;/* last card of subroutine lmdif. */} /* lmdif_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -