📄 d080501.txt
字号:
horizontal and is numbered from left to right.
AXIS XY puts MATLAB into its default "Cartesian" axes mode. The
coordinate system origin is at the lower left corner. The x
axis is horizontal and is numbered from left to right. The y
axis is vertical and is numbered from bottom to top.
AXIS EQUAL sets the aspect ratio so that equal tick mark
increments on the x-,y- and z-axis are equal in size. This
makes SPHERE(25) look like a sphere, instead of an ellipsoid.
AXIS IMAGE is the same as AXIS EQUAL except that the plot
box fits tightly around the data.
AXIS SQUARE makes the current axis box square in size.
AXIS NORMAL restores the current axis box to full size and
removes any restrictions on the scaling of the units.
This undoes the effects of AXIS SQUARE and AXIS EQUAL.
AXIS VIS3D freezes aspect ratio properties to enable rotation of
3-D objects and overrides stretch-to-fill.
AXIS OFF turns off all axis labeling, tick marks and background.
AXIS ON turns axis labeling, tick marks and background back on.
See also AXES.
diary off
diary on
y1-y1e
y1-y1e
ans =
1.0e+019 *
Columns 1 through 7
0 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 8 through 14
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 15 through 21
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 22 through 28
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 29 through 35
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 36 through 42
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 43 through 49
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 50 through 56
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 57 through 63
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 64 through 70
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 71 through 77
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
Columns 78 through 84
-0.0001 -0.0001 -0.0002 -0.0003 -0.0005 -0.0009 -0.0015
Columns 85 through 91
-0.0025 -0.0042 -0.0069 -0.0116 -0.0193 -0.0322 -0.0537
Columns 92 through 98
-0.0895 -0.1492 -0.2486 -0.4143 -0.6903 -1.1500 -1.9155
Columns 99 through 101
-3.1905 -5.3134 -8.8481
disp(which('rk51test'));
E:\matlabtemp\rk51test.m
clear 'e:\matlabtemp\rk51test.m'
fprintf('%25.25f\n',y1-y1e)
fprintf('%25.25f\n',y1-y1e)
0.0000000000000000000000000
-0.0002837707001284162100000
-0.0009356370527959789700000
-0.0023137079418260598000000
-0.0050857749806008101000000
-0.0104803798170625130000000
-0.0207332859452264980000000
-0.0398772129254751920000000
-0.0751322881692146890000000
-0.1393442365395714000000000
-0.2552444892932896900000000
-0.4628698938862498800000000
-0.8324484916375354300000000
-1.4867205816146907000000000
-2.6395136656497016000000000
-4.6622656673700931000000000
-8.1985230228656292000000000
-14.3606613305382780000000000
-25.0673200568471660000000000
-43.6213282055268790000000000
-75.6981322497631480000000000
-131.0341055004391800000000000
-226.3068089052321700000000000
-390.0431574187678100000000000
-670.9744107610604300000000000
-1152.2444213490235000000000000
-1975.5491729837959000000000000
-3382.1132978366222000000000000
-5782.1893833605573000000000000
-9872.8416713254992000000000000
-16837.4114269795830000000000000
-28683.0717476764690000000000000
-48811.6895941514520000000000000
-82984.6373691745100000000000000
-140952.4330729730400000000000000
-239205.7442481592300000000000000
-405616.8259851709000000000000000
-687266.3619973808500000000000000
-1163635.2372712195000000000000000
-1968828.0089439154000000000000000
-3328994.4342339039000000000000000
-5625314.9298611879000000000000000
-9499968.8806324005000000000000000
-16034346.2159805300000000000000000
-27048637.1232533450000000000000000
-45605280.9861040120000000000000000
-76854688.3594741820000000000000000
-129455440.0391159100000000000000000
-217958393.8818969700000000000000000
-366807626.6472396900000000000000000
-617052615.6606445300000000000000000
-1037605551.8256378000000000000000000
-1744116026.8653259000000000000000000
-2930608591.3391724000000000000000000
-4922498917.8834229000000000000000000
-8265411511.6887207000000000000000000
-13873937734.4973140000000000000000000
-23280724613.9086910000000000000000000
-39053463559.8588870000000000000000000
-65492791322.9023440000000000000000000
-109800082500.9492200000000000000000000
-184031081871.5507800000000000000000000
-308363497582.2500000000000000000000000
-516561165453.1406200000000000000000000
-865109555811.6406200000000000000000000
-1448486407903.2344000000000000000000000
-2424682827978.6875000000000000000000000
-4057847658162.3750000000000000000000000
-6789531134372.0000000000000000000000000
-11357687076491.1250000000000000000000000
-18995414994616.0000000000000000000000000
-31762818552961.5000000000000000000000000
-53101051542012.5000000000000000000000000
-88757165845823.0000000000000000000000000
-148327688146004.0000000000000000000000000
-247834472664200.0000000000000000000000000
-414022542294584.0000000000000000000000000
-691530064621656.0000000000000000000000000
-1154848168563712.0000000000000000000000000
-1928267697731488.0000000000000000000000000
-3219142266463104.0000000000000000000000000
-5373350271842816.0000000000000000000000000
-8967759154702592.0000000000000000000000000
-14964359317716864.0000000000000000000000000
-24967167465024256.0000000000000000000000000
-41650370385995264.0000000000000000000000000
-69471767501566976.0000000000000000000000000
-115861489056854020.0000000000000000000000000
-193202384616775680.0000000000000000000000000
-322128963453923330.0000000000000000000000000
-537022197263671300.0000000000000000000000000
-895160850858254340.0000000000000000000000000
-1491961020848734200.0000000000000000000000000
-2486351699871006700.0000000000000000000000000
-4143023809607958500.0000000000000000000000000
-6902765907646808100.0000000000000000000000000
-11499547168060604000.0000000000000000000000000
-19155399191088464000.0000000000000000000000000
-31904762510927987000.0000000000000000000000000
-53134256023870636000.0000000000000000000000000
-88480869022534992000.0000000000000000000000000
disp(which('rk51test'));
E:\matlabtemp\rk51test.m
clear 'e:\matlabtemp\rk51test.m'
fprintf('%25.15f\n',y1-y1e)
fprintf('%25.15f\n',y1-y1e)
0.000000000000000
-0.000283770700128
-0.000935637052796
-0.002313707941826
-0.005085774980601
-0.010480379817063
-0.020733285945226
-0.039877212925475
-0.075132288169215
-0.139344236539571
-0.255244489293290
-0.462869893886250
-0.832448491637535
-1.486720581614691
-2.639513665649702
-4.662265667370093
-8.198523022865629
-14.360661330538278
-25.067320056847166
-43.621328205526879
-75.698132249763148
-131.034105500439180
-226.306808905232170
-390.043157418767810
-670.974410761060430
-1152.244421349023500
-1975.549172983795900
-3382.113297836622200
-5782.189383360557300
-9872.841671325499200
-16837.411426979583000
-28683.071747676469000
-48811.689594151452000
-82984.637369174510000
-140952.433072973040000
-239205.744248159230000
-405616.825985170900000
-687266.361997380850000
-1163635.237271219500000
-1968828.008943915400000
-3328994.434233903900000
-5625314.929861187900000
-9499968.880632400500000
-16034346.215980530000000
-27048637.123253345000000
-45605280.986104012000000
-76854688.359474182000000
-129455440.039115910000000
-217958393.881896970000000
-366807626.647239690000000
-617052615.660644530000000
-1037605551.825637800000000
-1744116026.865325900000000
-2930608591.339172400000000
-4922498917.883422900000000
-8265411511.688720700000000
-13873937734.497314000000000
-23280724613.908691000000000
-39053463559.858887000000000
-65492791322.902344000000000
-109800082500.949220000000000
-184031081871.550780000000000
-308363497582.250000000000000
-516561165453.140620000000000
-865109555811.640620000000000
-1448486407903.234400000000000
-2424682827978.687500000000000
-4057847658162.375000000000000
-6789531134372.000000000000000
-11357687076491.125000000000000
-18995414994616.000000000000000
-31762818552961.500000000000000
-53101051542012.500000000000000
-88757165845823.000000000000000
-148327688146004.000000000000000
-247834472664200.000000000000000
-414022542294584.000000000000000
-691530064621656.000000000000000
-1154848168563712.000000000000000
-1928267697731488.000000000000000
-3219142266463104.000000000000000
-5373350271842816.000000000000000
-8967759154702592.000000000000000
-14964359317716864.000000000000000
-24967167465024256.000000000000000
-41650370385995264.000000000000000
-69471767501566976.000000000000000
-115861489056854020.000000000000000
-193202384616775680.000000000000000
-322128963453923330.000000000000000
-537022197263671300.000000000000000
-895160850858254340.000000000000000
-1491961020848734200.000000000000000
-2486351699871006700.000000000000000
-4143023809607958500.000000000000000
-6902765907646808100.000000000000000
-11499547168060604000.000000000000000
-19155399191088464000.000000000000000
-31904762510927987000.000000000000000
-53134256023870636000.000000000000000
-88480869022534992000.000000000000000
disp(which('rk51test'));
E:\matlabtemp\rk51test.m
clear 'e:\matlabtemp\rk51test.m'
fprintf('%+25.15f\n',y1-y1e)
fprintf('%+25.15f\n',y1-y1e)
+0.000000000000000
-0.000283770700128
-0.000935637052796
-0.002313707941826
-0.005085774980601
-0.010480379817063
-0.020733285945226
-0.039877212925475
-0.075132288169215
-0.139344236539571
-0.255244489293290
-0.462869893886250
-0.832448491637535
-1.486720581614691
-2.639513665649702
-4.662265667370093
-8.198523022865629
-14.360661330538278
-25.067320056847166
-43.621328205526879
-75.698132249763148
-131.034105500439180
-226.306808905232170
-390.043157418767810
-670.974410761060430
-1152.244421349023500
-1975.549172983795900
-3382.113297836622200
-5782.189383360557300
-9872.841671325499200
-16837.411426979583000
-28683.071747676469000
-48811.689594151452000
-82984.637369174510000
-140952.433072973040000
-239205.744248159230000
-405616.825985170900000
-687266.361997380850000
-1163635.237271219500000
-1968828.008943915400000
-3328994.434233903900000
-5625314.929861187900000
-9499968.880632400500000
-16034346.215980530000000
-27048637.123253345000000
-45605280.986104012000000
-76854688.359474182000000
-129455440.039115910000000
-217958393.881896970000000
-366807626.647239690000000
-617052615.660644530000000
-1037605551.825637800000000
-1744116026.865325900000000
-2930608591.339172400000000
-4922498917.883422900000000
-8265411511.688720700000000
-13873937734.497314000000000
-23280724613.908691000000000
-39053463559.858887000000000
-65492791322.902344000000000
-109800082500.949220000000000
-184031081871.550780000000000
-308363497582.250000000000000
-516561165453.140620000000000
-865109555811.640620000000000
-1448486407903.234400000000000
-2424682827978.687500000000000
-4057847658162.375000000000000
-6789531134372.000000000000000
-11357687076491.125000000000000
-18995414994616.000000000000000
-31762818552961.500000000000000
-53101051542012.500000000000000
-88757165845823.000000000000000
-148327688146004.000000000000000
-247834472664200.000000000000000
-414022542294584.000000000000000
-691530064621656.000000000000000
-1154848168563712.000000000000000
-1928267697731488.000000000000000
-3219142266463104.000000000000000
-5373350271842816.000000000000000
-8967759154702592.000000000000000
-14964359317716864.000000000000000
-24967167465024256.000000000000000
-41650370385995264.000000000000000
-69471767501566976.000000000000000
-115861489056854020.000000000000000
-193202384616775680.000000000000000
-322128963453923330.000000000000000
-537022197263671300.000000000000000
-895160850858254340.000000000000000
-1491961020848734200.000000000000000
-2486351699871006700.000000000000000
-4143023809607958500.000000000000000
-6902765907646808100.000000000000000
-11499547168060604000.000000000000000
-19155399191088464000.000000000000000
-31904762510927987000.000000000000000
-53134256023870636000.000000000000000
-88480869022534992000.000000000000000
figure(5)
error=y1-y1e;
plot(x1(1:15),error(y1-y1e))
figure(5)
error=y1-y1e;
plot(x1(1:15),error(y1-y1e))
Warning: Subscript indices must be integer values.
??? Index into matrix is negative or zero. See release notes on changes to
logical indices.
figure(5)
error=y1-y1e;
plot(x1(1:15),error(1:15))
figure(5)
error=y1-y1e;
plot(x1(1:15),error(1:15))
figure(5)
error=y1-y1e;
plot(x1(1:20),error(1:20),'*')
figure(5)
error=y1-y1e;
plot(x1(1:20),error(1:20),'*')
help errorbar
ERRORBAR Error bar plot.
ERRORBAR(X,Y,L,U) plots the graph of vector X vs. vector Y with
error bars specified by the vectors L and U. L and U contain the
lower and upper error ranges for each point in Y. Each error bar
is L(i) + U(i) long and is drawn a distance of U(i) above and L(i)
below the points in (X,Y). The vectors X,Y,L and U must all be
the same length. If X,Y,L and U are matrices then each column
produces a separate line.
ERRORBAR(X,Y,E) or ERRORBAR(Y,E) plots Y with error bars [Y-E Y+E].
ERRORBAR(...,'LineSpec') uses the color and linestyle specified by
the string 'LineSpec'. See PLOT for possibilities.
H = ERRORBAR(...) returns a vector of line handles.
For example,
x = 1:10;
y = sin(x);
e = std(y)*ones(size(x));
errorbar(x,y,e)
draws symmetric error bars of unit standard deviation.
figure
x = 1:10;
y = sin(x);
e = std(y)*ones(size(x));
errorbar(x,y,e)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -