📄 matrix.h
字号:
/* Matrix.h Header file for the Matrix class Copyright (c) 2005, 2006 by Hyuk Cho Copyright (c) 2003, 2004 by Hyuk Cho, Yuqiang Guan, and Suvrit Sra {hyukcho, yguan, suvrit}@cs.utexas.edu*/#if !defined(_MATRIX_H_)#define _MATRIX_H_#include "Constants.h"#define Sim_Mat(i,j) (i>=j? Sim_Mat[i][j]:Sim_Mat[j][i])//typedef double *VECTOR_double;extern long memoryUsed;class Matrix{ protected: int numRow, numCol, kernel, degree; long memory_used; double smoothingFactor; double annealingFactor; double L1_sum, Norm_sum, constant, gain, PlogP, mutualInfo; double *norm, *L1_norm, *priors, *p_x, *pX, *pY; double **Sim_Mat; public: double getMutualInfo(); double getPlogP(); int getNumRow(); int getNumCol(); double GetL1Norm(int i); double GetNorm(int i); double GetL1Sum(); double GetNormSum(); long GetMemoryUsed(); void setSmoothingFactor(int smoothingType, double smooghingFactor); void setAnnealingFactor(double annealingFactor); double getSmoothingFactor(); double getAnnealingFactor(); double *getPX(); double *getPY(); Matrix(int r, int c); virtual ~Matrix() {}; virtual void trans_mult(double *x, double *result) = 0; virtual void squared_trans_mult(double *x, double *result) = 0; virtual double dot_mult(double *v, int i) = 0; virtual double squared_dot_mult(double *v, int i) = 0; virtual void right_dom_SV(int *cluster, int *cluster_size, int n_Clusters, double ** CV, double *cluster_quality, int flag) = 0; //virtual void A_trans_A(int flag, int * index, int *pointers, double ** A_t_A) = 0; //virtual void euc_dis(double *x, double *result) = 0; virtual void euc_dis(double *x, double norm_x, double *result) = 0; //virtual double euc_dis(double *v, int i) = 0; virtual double euc_dis(double *v, int i, double norm_v) = 0; virtual void Kullback_leibler(double *x, double *result, int laplace) = 0; virtual double Kullback_leibler(double *x, int i, int laplace) = 0; virtual void Kullback_leibler(double *x, double *result, int laplace, double l1norm_X) = 0; virtual double Kullback_leibler(double *x, int i, int laplace, double l1norm_X) = 0; virtual double Jenson_Shannon(double *x, int i, double l1n_x) = 0; virtual void Jenson_Shannon(double *x, double *result, double prior_x) = 0; virtual void computeNorm_2() = 0; virtual void computeNorm_1() = 0 ; virtual void computeNorm_KL(int l) = 0; virtual void normalize_mat_L2() = 0; virtual void normalize_mat_L1() = 0; virtual void pearson_normalize() = 0; virtual void ith_add_CV(int i, double *CV) = 0; virtual void CV_sub_ith(int i, double *CV) = 0; virtual void CV_sub_ith_prior(int i, double *CV) = 0; virtual void ith_add_CV_prior(int i, double *CV) = 0; virtual double computeMutualInfo() = 0; virtual double exponential_kernel(double *v, int i, double norm_v, double sigma_squared) = 0; virtual void exponential_kernel(double *x, double norm_x, double *result, double sigma_squared) = 0; //void polynomial_kernel(int *cluster, int *cluster_size, int n_Clusters, double **result, double c, int d, int flag); virtual double i_j_dot_product(int i, int j) = 0; virtual double squared_i_j_euc_dis(int i, int j) = 0; double get_dot_i_j(int i, int j); //itcc virtual bool isHavingNegative() = 0; virtual double getPlogQ(double **pxhatyhat, int *rowCL, int *colCL, double *pXhat, double *pYhat) = 0; virtual void preprocess() = 0; virtual void condenseMatrix(int *rowCL, int *colCL, int numRC, int numCC, double **cM) = 0; virtual void condenseMatrix(int *rowCL, int *colCL, int numRC, int numCC, double **cM, bool *isInversed) = 0; virtual double Kullback_leibler(double *x, int i, int priorType, int clusterDimension) = 0; virtual void addRow(double *x, int i, int *colCL) = 0; virtual void addRow(double **x, int row, int i, int *colCL) = 0; virtual void addCol(double *x, int i, int *rowCL) = 0; virtual void addCol(double **x, int col, int i, int *rowCL) = 0; virtual void subtractRow(double *x, int i, int *colCL) = 0; virtual void subtractRow(double **x, int row, int i, int *colCL) = 0; virtual void subtractCol(double *x, int i, int *rowCL) = 0; virtual void subtractCol(double **x, int col, int i, int *rowCL) = 0; // mssrIccvirtual double computeObjectiveFunctionValue(int *rowCL, int *colCL, double **cM) = 0; virtual double computeObjectiveFunctionValue(int *rowCL, int *colCL, double **cM, bool *isInversed) = 0; virtual double computeObjectiveFunctionValue(int *rowCL, int *colCL, double **cM, double **rowCentroid, double **colCentroid) = 0; virtual double computeObjectiveFunctionValue(int *rowCL, int *colCL, double **cM, double **rowCentroid, double **colCentroid, bool *isInversed) = 0; virtual double computeObjectiveFunctionValue4RowCluster(int *rowCL, double **rowCentroid) = 0;virtual double computeObjectiveFunctionValue4ColCluster(int *colCL, double **colCentroid) = 0; virtual double squaredFNorm() = 0; virtual double squaredL2Norm4Row(int i) = 0; virtual double squaredL2Norm4Col(int j) = 0; virtual double computeRowDistance(int rowId, int clusterLabel, int *colCL, double **cM, double rowQuality4Compressed) = 0; virtual double computeColDistance(int colId, int clusterLabel, int *rowCL, double **cM, double colQuality4Compressed) = 0;virtual double computeRowDistance(int rowId, int rowCluster, int *rowCL, int *colCL, double **cM) = 0;virtual double computeColDistance(int colId, int colCluster, int *rowCL, int *colCL, double **cM) = 0; virtual double computeRowDistance(int rowId, int clusterLabel, int *colCL, double **cM, double rowQuality4Compressed, bool *isInversed) = 0; virtual double computeColDistance(int colId, int clusterLabel, int *rowCL, double **cM, double colQuality4Compressed, bool *isInversed) = 0; // mssrIIcc virtual void computeRowCentroid(int numRC, int *rowCL, double **rowCentroid) = 0; virtual void computeRowCentroid(int numRC, int *rowCL, double **rowCentroid, bool *isInversed) = 0; virtual void computeColCentroid(int numCC, int *colCL, double **colCentroid) = 0; virtual void computeColCentroid(int numCC, int *colCL, double **colCentroid, bool *isInversed) = 0; virtual void computeRowAP(int rowId, double **colCentroid, int *colCL, double *rowAP) = 0; virtual void computeRowAP(int rowId, double **colCentroid, int *colCL, double *rowAP, bool *isInversed) = 0; virtual void computeColAP(int colId, double **rowCentroid, int *rowCL, double *colAP) = 0; virtual void computeColAP(int colId, double **rowCentroid, int *rowCL, double *colAP, bool *isInversed) = 0; virtual void addRow(double *x, int i) = 0; virtual void addRow(double *x, int i, bool *isInversed) = 0; virtual void addCol(double *x, int i) = 0; virtual void addCol(double *x, int i, bool *isInversed) = 0; virtual void addCol(double *x, int i, int *rowCL, bool *isInversed) =0; virtual void addCol(double **x, int col, int i, int *rowCL, bool *isInversed) =0; virtual void subtractRow(double *x, int i) = 0; virtual void subtractRow(double *x, int i, bool *isInversed) = 0; virtual void subtractCol(double *x, int i) = 0; virtual void subtractCol(double *x, int i, bool *isInversed) = 0; virtual void subtractCol(double *x, int i, int *rowCL, bool *isInversed) =0; virtual void subtractCol(double **x, int col, int i, int *rowCL, bool *isInversed) =0;};#endif // !defined(_MATRIX_H_)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -