📄 readme.txt
字号:
Clustering(X, varargin) is the main function. This function takes as input the original data set (three-way or two-way),
distance and clustering preferences. It then computes the model and applies hierarchical clustering based on the distance
and linkage method given as input parameters.
Inputs: X: two-way or three-way array
vargin(1): flag_label 0/1
vargin(2): flag_color 0/1
vargin(3): class id
vargin{4}: linkage method
vargin{5}: distance measure
optional: method : {'tucker', 'parafac', 'matrix'}
param : {number of components, 'scores' or 'residuals'} if 'tucker' or 'parafac'
1 if 'matrix'(Distance between two samples are computed by calculating the Frobenius norm)
(of the matrices corresponding to the slices.)
Example: For three-way array, X,
Clustering(X,0,1,1,'complete','mahalanobis', 'tucker',{[2 2 2], 'scores'});
Clustering(X,0,1,2,'complete','mahalanobis', 'parafac',{2, 'scores'});
Clustering(X,0,1,1,'complete','mahalanobis', 'matrix', 1);
For two-way array, X
Clustering(X,0,1,1,'complete','mahalanobis');
Last modified: 05/21/2007
Version 1
Reference:
Evrim Acar, Rasmus Bro, Bonnie Schmidt, New Exploratory Metabonomic Tools, Submitted to Journal of Chemometrics, 2007.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -