📄 aresolutions.m
字号:
function [pi1, pi2, P1, P2] = ARESolutions(Sw, Sv)
% function [pi1, pi2, P1, P2] = ARESolutions(Sw, Sv)
%
% Compute the Algebraic Ricatti Equation (ARE) solutions
% for the optimal controller and for the Kalman filter.
% INPUTS
% Sw = process noise covariance matrix.
% Sv = measurement noise covariance matrix.
% OUTPUTS
% pi1 = optimal control ARE solution for the first local T-S model.
% pi2 = optimal control ARE solution for the second local T-S model.
% P1 = Kalman filter ARE solution for the first local T-S model.
% P2 = Kalman filter ARE solution for the second local T-S model.
[A1, A2, B1, B2, h1, h2] = FuzzyModel([0 0 0]);
% Optimal control ARE solutions.
pi1 = dare(A1,B1,eye(3),eye(1),zeros(size(B1)),eye(3));
pi2 = dare(A2,B2,eye(3),eye(1),zeros(size(B2)),eye(3));
% Kalman filter ARE solutions.
P1 = dare(A1', eye(3), Sw, Sv, zeros(3,3), eye(3));
P2 = dare(A2', eye(3), Sw, Sv, zeros(3,3), eye(3));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -