📄 pca.m
字号:
function [mappedX, mapping] = pca(X, no_dims)%PCA Perform the PCA algorithm%% [mappedX, mapping] = pca(X, no_dims)%% The function runs PCA on a set of datapoints X. The variable% no_dims sets the number of dimensions of the feature points in the % embedded feature space (no_dims >= 1, default = 2). % For no_dims, you can also specify a number between 0 and 1, determining % the amount of variance you want to retain in the PCA step.% The function returns the locations of the embedded trainingdata in % mappedX. Furthermore, it returns information on the mapping in mapping.%%% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.3b.% The toolbox can be obtained from http://www.cs.unimaas.nl/l.vandermaaten% You are free to use, change, or redistribute this code in any way you% want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author.%% (C) Laurens van der Maaten% Maastricht University, 2007 if ~exist('no_dims', 'var') no_dims = 2; end % Make sure data is zero mean mapping.mean = mean(X, 1); X = X - repmat(mapping.mean, [size(X, 1) 1]); % Compute covariance matrix if size(X, 2) < size(X, 1) C = cov(X); else C = (1 / size(X, 1)) * (X * X'); % if N>D, we better use this matrix for the eigendecomposition end % Perform eigendecomposition of C C(isnan(C)) = 0; C(isinf(C)) = 0; [M, lambda] = eig(C); % Sort eigenvectors in descending order [lambda, ind] = sort(diag(lambda), 'descend'); if no_dims > size(M, 2) no_dims = size(M, 2); warning(['Target dimensionality reduced to ' num2str(no_dims) '.']); end M = M(:,ind(1:no_dims)); lambda = lambda(1:no_dims); % Apply mapping on the data if ~(size(X, 2) < size(X, 1)) M = (X' * M) .* repmat((1 ./ sqrt(size(X, 1) .* lambda))', [size(X, 2) 1]); % normalize in order to get eigenvectors of covariance matrix end mappedX = X * M; % Store information for out-of-sample extension mapping.M = M; mapping.lambda = lambda;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -