📄 sdram_rw.v
字号:
////////////////////////////////////////////////////////////////////////////////
// Author: lsilvest
//
// Create Date: 02/03/2008
//
// Module Name: sdram_rw
//
// Target Devices: Altera DE2
//
// Tool versions: Quartus II 7.2 Web Edition
//
//
// Description: This module provides a simple test bench for the SDRAM
// controller. It sequentially writes all positions in
// memory, pauses for a while and then reads back all
// positions comparing them to the written value. The
// green LEDG1 indicates the test passed. The red LEDR0
// indicates at least one of the readbacks failed
//
////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2008 Authors
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
////////////////////////////////////////////////////////////////////////////////
module sdram_rw
(
input clk_i,
input rst_i,
output [21:0] addr_i,
output [31:0] dat_i,
input [31:0] dat_o,
output we_i,
input ack_o,
output stb_i,
output cyc_i,
output [0:0] green_led,
output [0:0] red_led
);
parameter START_WRITE_ST = 4'b0000,
WRITE_ST = 4'b0001,
WAIT_WRITE_ACK_ST = 4'b0010,
READ_ST = 4'b0011,
WAIT_READ_ACK_ST = 4'b0100,
WRITE_WAIT_ST = 4'b0101,
START_READ_ST = 4'b0110,
READ_WAIT_ST = 4'b0111,
DONE_ST = 4'b1000;
parameter MAX_RW = 24'd200000; // 200000 is the full 8 Mbytes of memory
parameter R_TO_W_WAIT_TIME = 24'd12500000;
parameter INITIAL_MEM_VALUE = 32'd12345678;
reg [21:0] addr_i_r;
reg [31:0] dat_i_r;
reg we_i_r;
reg stb_i_r;
reg cyc_i_r;
reg [23:0] rw_cntr;
reg [23:0] cntr;
reg [31:0] number;
reg [31:0] mem_value;
reg [3:0] state;
reg [0:0] red_led_r;
reg [0:0] green_led_r;
assign dat_i = dat_i_r;
assign addr_i = addr_i_r;
assign we_i = we_i_r;
assign stb_i = stb_i_r;
assign cyc_i = cyc_i_r;
assign red_led = red_led_r;
assign green_led = green_led_r;
initial begin
mem_value <= INITIAL_MEM_VALUE;
cntr <= 24'b0;
rw_cntr <= 24'b0;
state <= START_WRITE_ST;
we_i_r <= 1'b0;
addr_i_r <= 22'b0;
stb_i_r <= 1'b0;
cyc_i_r <= 1'b0;
red_led_r <= 1'b0;
green_led_r <= 1'b0;
end
always@ (posedge clk_i) begin
if (rst_i) begin
state <= START_WRITE_ST;
red_led_r <= 1'b0;
end else begin
case (state)
START_WRITE_ST:
begin
state <= WRITE_ST;
addr_i_r <= 22'b0;
rw_cntr <= 24'b0;
mem_value <= INITIAL_MEM_VALUE;
end
WRITE_ST:
begin
stb_i_r <= 1'b1;
cyc_i_r <= 1'b1;
dat_i_r <= mem_value;
we_i_r <= 1'b1;
state <= WAIT_WRITE_ACK_ST;
end
WAIT_WRITE_ACK_ST:
if (ack_o) begin
state <= WRITE_WAIT_ST;
stb_i_r <= 1'b0;
cyc_i_r <= 1'b0;
end
WRITE_WAIT_ST:
begin
mem_value <= mem_value + 32'h00000001;
if (rw_cntr < MAX_RW - 1) begin
addr_i_r <= addr_i_r + 22'd2;
rw_cntr <= rw_cntr + 24'b1;
state <= WRITE_ST;
end else begin
state <= START_READ_ST;
end
end
START_READ_ST:
if (!cntr) begin // wait for R_TO_W_WAIT_TIME
state <= READ_ST;
addr_i_r <= 22'b0;
rw_cntr <= 24'b0;
mem_value <= INITIAL_MEM_VALUE;
end else begin
state <= START_READ_ST;
end
READ_ST:
begin
stb_i_r <= 1'b1;
cyc_i_r <= 1'b1;
we_i_r <= 1'b0;
state <= WAIT_READ_ACK_ST;
end
WAIT_READ_ACK_ST:
if (ack_o) begin
state <= READ_WAIT_ST;
number <= dat_o;
stb_i_r <= 1'b0;
cyc_i_r <= 1'b0;
end
READ_WAIT_ST:
begin
if (rw_cntr < MAX_RW - 1) begin
if (mem_value != number) begin
red_led_r[0] <= 1'b1;
end
mem_value <= mem_value + 1'b1;
rw_cntr <= rw_cntr + 24'b1;
state <= READ_ST;
// increment address:
addr_i_r <= addr_i_r + 22'd2;
end else begin // if (rw_cntr < MAX_RW - 1)
//state <= START_WRITE_ST;
state <= DONE_ST;
end
end // case: READ_WAIT_ST
DONE_ST:
begin
state <= DONE_ST;
if (!red_led_r[0])
green_led_r[0] <= 1'b1;
end
endcase // case (state)
end // else: !if(rst_i)
end // always@ (posedge clk_i)
always@ (posedge clk_i) begin
if (rst_i) begin
cntr <= 24'b0;
end else if (state == WRITE_WAIT_ST) begin
cntr <= R_TO_W_WAIT_TIME;
end else
cntr <= cntr - 24'b1;
end
endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -