📄 mgs.m
字号:
function [W, T] = MGS(A)
% Compute the modified Gram-Schmidt transformation T A = [ W ; 0 ] where A is a given
% m x n matrix, and T is an orthogonal m x m matrix, and W is an n x n
% matrix.
[m,n] = size(A);
if m < n
disp('Error - input matrix cannot have more cols than rows');
return
end
W = zeros(n);
for k = 1 : n
sigma = sqrt(A(:, k)' * A(:, k));
if abs(sigma) < 100 * eps
disp('The input matrix is not full rank');
return;
end
W(k, k) = sigma;
for j = k+1 : n
W(k, j) = A(:, k)' * A(:, j) / sigma;
end
T(k, :) = A(:, k)' / sigma;
for j = k+1 : n
A(:, j) = A(:, j) - W(k, j) * A(:, k) / sigma;
end
end
% At this point T is an n x m orthogonal matrix.
% Complete the rows of T so that T is an m x m orthogonal matrix.
% This uses Gram-Schmidt orthonormalization.
%T(n+1:n+m, n+1:n+m) = eye(m);
T(n+1:n+m, 1:m) = eye(m);
index = n + 1;
for k = n+1 : n+m
temp = T(k, :);
for i = 1 : k-1
temp = temp - T(k, :) * T(i, :)' * T(i,:);
end
if norm(temp) > 100 * eps
T(index, :) = temp / norm(temp);
index = index + 1;
end
end
T = T(1:m, 1:m);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -