📄 ex7-2_colored.m
字号:
function Colored(flag, corr)
% Kalman filter simulation with colored (time correlated) measurement noise.
% INPUTS:
% flag = 0 means ignore the time correlation of the measurement noise
% 1 means augment the system state
% 2 means use the Bryson/Henrikson approach
% corr = magnitude of measurement noise correlation <= 1
kf = 500; % Number of time steps in simulation
phi = [0.7 -0.15; 0.03 0.79];
H = [1 0; 0 1];
psi = [corr 0; 0 corr];
L = [0.15; 0.21];
Q = L * [1] * L';
Qv = [0.05 0; 0 0.05];
phi1 = [phi zeros(2,2); zeros(2,2) psi];
Q1 = [Q zeros(2,2); zeros(2,2) Qv];
R1 = zeros(2,2);
H1 = [H eye(2,2)];
if (flag == 0)
n = 2; % number of states
R = Qv;
sTitle = 'Correlation Ignored';
elseif (flag == 1)
n = 4; % number of states
sTitle = 'Augmented State';
elseif (flag == 2)
n = 2; % number of states
R = H * Q * H' + Qv;
M = Q * H';
D = H * phi - psi * H;
sTitle = 'Bryson and Henrikson';
else
disp('illegal input argument');
end
% Assume xhat(0) = x(0) = 0.
x = zeros(4,1); xhatplus = zeros(n,1); xhatminus = zeros(n,1);
z = zeros(2,1);
% Assume P(0) = 0.
Pplus = zeros(n,n); Pminus = zeros(n,n);
xArray = []; xhatArray = []; KArray = []; PArray = []; zArray = [];
randn('state', 0);
for k = 1 : kf
% Simulate the system
StateNoise = randn;
n(1,1) = L(1,1) * StateNoise;
n(2,1) = L(2,1) * StateNoise;
n(3,1) = sqrt(Qv(1,1)) * randn;
n(4,1) = sqrt(Qv(2,2)) * randn;
x = phi1 * x + n;
zold = z;
z = H1 * x;
% Run the Kalman filter
if (flag == 0)
% Ignore the time correlation
Pminus = phi * Pplus * phi' + Q;
K = inv(H * Pminus * H' + R);
K = (Pminus * H') * K;
xhatminus = phi * xhatplus;
xhatplus = xhatminus + K * (z - H * xhatminus);
Pplus = Pminus - K * H * Pminus;
elseif (flag == 1)
% Use the augmented state approach
Pminus = phi1 * Pplus * phi1' + Q1;
K = inv(H1 * Pminus * H1' + R1);
K = (Pminus * H1') * K;
xhatminus = phi1 * xhatplus;
xhatplus = xhatminus + K * (z - H1 * xhatminus);
Pplus = Pminus - K * H1 * Pminus;
elseif (flag == 2)
% Use the Bryson/Henrikson approach
zeta = z - psi * zold;
C = M * inv(D * Pminus * D' + R);
K = Pminus * D' * inv(D * Pminus * D' + R);
xhatplus = xhatminus + K * (zeta - D * xhatminus);
xhatminus = phi * xhatplus + C * (zeta - D * xhatplus);
Pplus = (eye(2) - K * D) * Pminus * (eye(2) - K * D)' + K * R * K';
Pminus = phi * Pplus * phi' + Q - C * M' - phi * K * M - M' * K' * phi';
xhatplus = xhatminus;
end
% Save data for plotting.
xArray = [xArray x];
xhatArray = [xhatArray xhatplus];
KArray = [KArray K];
PArray = [PArray Pplus];
zArray = [zArray z];
end
% Plot.
k = 1 : kf;
close all;
figure;
plot(k, zArray(1,:) - xArray(1,:), '-', k, xArray(1,:) - xhatArray(1,:), ':');
title([sTitle,' - x1 - Solid = Measurement Error, Dotted = Estimation Error']);
xlabel('time');
figure;
plot(k, zArray(2,:) - xArray(2,:), '-', k, xArray(2,:) - xhatArray(2,:), ':');
title([sTitle,' - x2 - Solid = Measurement Error, Dotted = Estimation Error']);
xlabel('time');
% Compute estimation error statistics.
err1 = xArray(1,:) - xhatArray(1,:);
err1 = sqrt(norm(err1)^2 / kf);
meas = xArray(1,:) - zArray(1,:);
meas = sqrt(norm(meas)^2 / kf);
disp(['x1 RMS Meas / Est Error Variance = ',num2str(meas),' / ',num2str(err1)]);
err2 = xArray(2,:) - xhatArray(2,:);
err2 = sqrt(norm(err2)^2 / kf);
meas = xArray(1,:) - zArray(1,:);
meas = sqrt(norm(meas)^2 / kf);
disp(['x2 RMS Meas / Est Error Variance = ',num2str(meas),' / ',num2str(err2)]);
disp(['RMS Est Error Variance Sum = ',num2str(err1+err2)]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -