⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rsa.cpp

📁 system C源码 一种替代verilog的语言
💻 CPP
字号:
/*****************************************************************************  The following code is derived, directly or indirectly, from the SystemC  source code Copyright (c) 1996-2006 by all Contributors.  All Rights reserved.  The contents of this file are subject to the restrictions and limitations  set forth in the SystemC Open Source License Version 2.4 (the "License");  You may not use this file except in compliance with such restrictions and  limitations. You may obtain instructions on how to receive a copy of the  License at http://www.systemc.org/. Software distributed by Contributors  under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF  ANY KIND, either express or implied. See the License for the specific  language governing rights and limitations under the License. *****************************************************************************//*****************************************************************************   rsa.cpp -- An implementation of the RSA public-key cipher. The             following implementation is based on the one given in Cormen et             al., Inroduction to Algorithms, 1991. I'll refer to this book as             CLR because of its authors. This implementation shows the usage of             arbitrary precision types of SystemC. That is, these types in             SystemC can be used to implement algorithmic examples regarding             arbitrary precision integers. The algorithms used are not the most             efficient ones; however, they are intended for explanatory             purposes, so they are simple and perform their job correctly.             Below, NBITS shows the maximum number of bits in n, the variable             that is a part of both the public and secret keys, P and S,             respectively. NBITS can be made larger at the expense of longer             running time. For example, CLR mentions that the RSA cipher uses             large primes that contain approximately 100 decimal digits. This             means that NBITS should be set to approximately 560.             Some background knowledge: A prime number p > 1 is an integer that             has only two divisiors, 1 and p itself. For example, 2, 3, 5, 7,             and 11 are all primes. If p is not a prime number, it is called a             composite number. If we are given two primes p and q, it is easy             to find their product p * q; however, if we are given a number m             which happens to be the product of two primes p and q that we do             not know, it is very difficult to find p and q if m is very large,             i.e., it is very difficult to factor m. The RSA public-key             cryptosystem is based on this fact. Internally, we use the             Miller-Rabin randomized primality test to deal with primes. More             information can be obtained from pp. 831-836 in CLR, the first             edition.  Original Author: Ali Dasdan, Synopsys, Inc.  *****************************************************************************/ /*****************************************************************************   MODIFICATION LOG - modifiers, enter your name, affiliation, date and  changes you are making here.       Name, Affiliation, Date:  Description of Modification:     *****************************************************************************/#include <stdlib.h>#include <sys/types.h>#include <time.h>#include "systemc.h"#define DEBUG_SYSTEMC // #undef this to disable assertions.// NBITS is the number of bits in n of public and secret keys P and// S. HALF_NBITS is the number of bits in p and q, which are the prime// factors of n.#define NBITS         250#define HALF_NBITS    ( NBITS / 2 )    // +2 is for the format specifier '0b' to make the string binary.#define STR_SIZE      ( NBITS + 2 ) #define HALF_STR_SIZE ( HALF_NBITS + 2 )typedef sc_bigint<NBITS>  bigint;double drand48();void srand48(long);// Return the absolute value of x.inline bigintabs_val( const sc_signed& x ) {  return ( x < 0 ? -x : x );}// Initialize the random number generator. If seed == -1, the// generator will be initialized with the system time. If not, it will// be initialized with the given seed. This way, an experiment with// random numbers becomes reproducible.inlinelongrandomize( int seed  ){  long in_seed;  // time_t is long.  in_seed = ( seed <= 0 ? time( 0 ) : seed );#ifndef WIN32  srand48( in_seed );#else  srand( ( unsigned ) in_seed );#endif  return in_seed;}// Flip a coin with probability p.#ifndef WIN32inlineboolflip( double p ){  return ( drand48() < p );}#elseinlineboolflip( double p ){  const int MAX_VAL = ( 1 << 15 );  // rand() produces an integer between 0 and 2^15-1, so rand() /  // MAX_VAL is a number between 0 and 1, which is required to compare  // with p.  return ( rand() < ( int ) ( p * MAX_VAL ) );}#endif// Randomly generate a bit string with nbits bits.  str has a length// of nbits + 1. This function is used to generate random messages to// process.inlinevoidrand_bitstr( char *str, int nbits ){  assert( nbits >= 4 );  str[ 0 ] = '0';  str[ 1 ] = 'b';  str[ 2 ] = '0';  // Sign for positive numbers.  for ( int i = 3; i < nbits; ++i )    str[ i ] = ( flip( 0.5 ) == true ? '1' : '0' );  str[ nbits ] = '\0';}// Generate "111..111" with nbits bits for masking.// str has a length of nbits + 1.inlinevoidmax_bitstr( char *str, int nbits ){  assert( nbits >= 4 );  str[ 0 ] = '0';  str[ 1 ] = 'b';    str[ 2 ] = '0';  // Sign for positive numbers.  for ( int i = 3; i < nbits; ++i )    str[ i ] = '1';  str[ nbits ] = '\0';}// Return a positive remainder.inlinebigintret_pos( const bigint& x, const bigint& n ){  if ( x < 0 )    return x + n;  return x;}// Compute the greatest common divisor ( gcd ) of a and b. This is// Euclid's algorithm. This algorithm is at least 2,300 years old! The// non-recursive version of this algorithm is not as elegant.bigintgcd( const bigint& a, const bigint& b ){  if ( b == 0 )    return a;  return gcd( b, a % b );}// Compute d, x, and y such that d = gcd( a, b ) = ax + by. x and y can// be zero or negative. This algorithm is also Euclid's algorithm but// it is extended to also find x and y. Recall that the existence of x// and y is guaranteed by Euclid's algorithm.voideuclid( const bigint& a, const bigint& b, bigint& d, bigint& x, bigint& y ){  if ( b != 0 ) {    euclid( b, a % b, d, x, y );    bigint tmp = x;    x = y;    y = tmp - ( a / b ) * y;  }  else {    d = a;    x = 1;    y = 0;  }}// Return d = a^b % n, where ^ represents exponentiation.inlinebigintmodular_exp( const bigint& a, const bigint& b, const bigint& n ){  bigint d = 1;  for ( int i = b.length() - 1; i >= 0; --i )  {    d = ( d * d ) % n;    if ( b[ i ] )      d = ( d * a ) % n;  }  return ret_pos( d, n );}// Return the multiplicative inverse of a, modulo n, when a and n are// relatively prime. Recall that x is a multiplicative inverse of a,// modulo n, if a * x = 1 ( mod n ). inlinebigintinverse( const bigint& a, const bigint& n ){  bigint d, x, y;  euclid( a, n, d, x, y );  assert( d == 1 );  x %= n;  return ret_pos( x, n );}// Find a small odd integer a that is relatively prime to n. I do not// know an efficient algorithm to do that but the loop below seems to// work; it usually iterates a few times. Recall that a is relatively// prime to n if their only common divisor is 1, i.e., gcd( a, n ) ==// 1.inlinebigintfind_rel_prime( const bigint& n ){  bigint a = 3;  while ( true ) {    if ( gcd( a, n ) == 1 )      break;    a += 2;#ifdef DEBUG_SYSTEMC    assert( a < n );#endif  }  return a;}// Return true if and only if a is a witness to the compositeness of// n, i.e., a can be used to prove that n is composite.inlineboolwitness( const bigint& a, const bigint& n ){  bigint n_minus1 = n - 1;  bigint x;  bigint d = 1;  // Compute d = a^( n-1 ) % n.  for ( int i = n.length() - 1; i >= 0; --i )  {    // Sun's SC5 bug when compiling optimized version    // makes the wrong assignment if abs_val() is inlined    //x = (sc_signed)d<0?-(sc_signed)d:(sc_signed)d;//abs_val( d );    if(d<0)      {      x = -d;      assert(x==-d);      }    else      {      x = d;      assert(x==d);      }    d = ( d * d ) % n;    // x is a nontrivial square root of 1 modulo n ==> n is composite.    if ( ( abs_val( d ) == 1 ) && ( x != 1 ) && ( x != n_minus1 ) )      return true;      if ( n_minus1[ i ] )      d = ( d * a ) % n;  }  // d = a^( n-1 ) % n != 1 ==> n is composite.  if ( abs_val( d ) != 1 )    return true;    return false;}// Check to see if n has any small divisors. For small numbers, we do// not have to run the Miller-Rabin primality test. We define "small"// to be less than 1023. You can change it if necessary.inlinebooldiv_test( const bigint& n ){  int limit;  if ( n < 1023 )    limit = n.to_int() - 2;  else    limit = 1023;  for ( int i = 3; i <= limit; i += 2 ) {    if ( n % i == 0 )      return false;   // n is composite.  }  return true;  // n may be prime.}// Return true if n is almost surely prime, return false if n is// definitely composite.  This test, called the Miller-Rabin primality// test, errs with probaility at most 2^(-s). CLR suggests s = 50 for// any imaginable application, and s = 3 if we are trying to find// large primes by applying miller_rabin to randomly chosen large// integers. Even though we are doing the latter here, we will still// choose s = 50. The probability of failure is at most// 0.00000000000000088817, a pretty small number.inlineboolmiller_rabin( const bigint& n ){  if ( n <= 2 )    return false;  if ( ! div_test( n ) )    return false;                char str[ STR_SIZE + 1 ];  int s = 50;  for ( int j = 1; j <= s; ++j ) {    // Choose a random number.    rand_bitstr( str, STR_SIZE );    // Set a to the chosen number.    bigint a = str;    // Make sure that a is in [ 1, n - 1 ].    a = ( a % ( n - 1 ) ) + 1;    // Check to see if a is a witness.    if ( witness( a, n ) )      return false;  // n is definitely composite.   }  return true;   // n is almost surely prime. }// Return a randomly generated, large prime number using the// Miller-Rabin primality test.inlinebigintfind_prime( const bigint& r ){  char p_str[ HALF_STR_SIZE + 1 ];  rand_bitstr( p_str, HALF_STR_SIZE );  p_str[ HALF_STR_SIZE - 1 ] = '1';  // Force p to be an odd number.  bigint p = p_str;#ifdef DEBUG_SYSTEMC  assert( ( p > 0 ) && ( p % 2 == 1 ) );#endif  // p is randomly determined. Now, we'll look for a prime in the  // vicinity of p. By the prime number theorem, executing the  // following loop approximately ln ( 2^NBITS ) iterations should  // find a prime.#ifdef DEBUG_SYSTEMC  // A very large counter to check against infinite loops.  sc_bigint<NBITS> niter = 0;#endif  while ( ! miller_rabin( p ) ) {    p = ( p + 2 ) % r;#ifdef DEBUG_SYSTEMC    assert( ++niter > 0 );#endif  }  return p;}// Encode or cipher the message in msg using the RSA public key P=( e, n ).inlinebigintcipher( const bigint& msg, const bigint& e, const bigint& n ){  return modular_exp( msg, e, n );}// Dencode or decipher the message in msg using the RSA secret key S=( d, n ).inlinebigintdecipher( const bigint& msg, const bigint& d, const bigint& n ){  return modular_exp( msg, d, n );}// The RSA cipher.inlinevoidrsa( int seed ){  // Generate all 1's in r.  char r_str[ HALF_STR_SIZE + 1 ];  max_bitstr( r_str, HALF_STR_SIZE );  bigint r = r_str;#ifdef DEBUG_SYSTEMC  assert( r > 0 );#endif  // Initialize the random number generator.  cout << "\nRandom number generator seed = " << randomize( seed ) << endl;  cout << endl;  // Find two large primes p and q.  bigint p = find_prime( r );  bigint q = find_prime( r );#ifdef DEBUG_SYSTEMC  assert( ( p > 0 ) && ( q > 0 ) );#endif  // Compute n and ( p - 1 ) * ( q - 1 ) = m.  bigint n = p * q;  bigint m = ( p - 1 ) * ( q - 1 );#ifdef DEBUG_SYSTEMC  assert( ( n > 0 ) && ( m > 0 ) );#endif  // Find a small odd integer e that is relatively prime to m.  bigint e = find_rel_prime( m );#ifdef DEBUG_SYSTEMC  assert( e > 0 );#endif  // Find the multiplicative inverse d of e, modulo m.  bigint d = inverse( e, m );#ifdef DEBUG_SYSTEMC  assert( d > 0 );#endif  // Output public and secret keys.  cout << "RSA public key P: P=( e, n )" << endl;  cout << "e = " << e << endl;  cout << "n = " << n << endl;  cout << endl;  cout << "RSA secret key S: S=( d, n )" << endl;  cout << "d = " << d << endl;  cout << "n = " << n << endl;  cout << endl;  // Cipher and decipher a randomly generated message msg.  char msg_str[ STR_SIZE + 1 ];  rand_bitstr( msg_str, STR_SIZE );  bigint msg = msg_str;  msg %= n; // Make sure msg is smaller than n. If larger, this part            // will be a block of the input message.#ifdef DEBUG_SYSTEMC  assert( msg > 0 );#endif  cout << "Message to be ciphered = " << endl;  cout << msg << endl;  bigint msg2 = cipher( msg, e, n );  cout << "\nCiphered message = " << endl;  cout << msg2 << endl;  msg2 = decipher( msg2, d, n );  cout << "\nDeciphered message = " << endl;  cout << msg2 << endl;  // Make sure that the original message is recovered.  if ( msg == msg2 ) {    cout << "\nNote that the original message == the deciphered message, " << endl;    cout << "showing that this algorithm and implementation work correctly.\n" << endl;  }  else {    // This case is unlikely.    cout << "\nNote that the original message != the deciphered message, " << endl;    cout << "showing that this implementation works incorrectly.\n" << endl;  }  return;}int sc_main( int argc, char *argv[] ){  if ( argc <= 1 )    rsa( -1 );  else    rsa( atoi( argv[ 1 ] ) );  return 0;}// End of file

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -