⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fft.cpp

📁 system C源码 一种替代verilog的语言
💻 CPP
字号:
/*****************************************************************************  The following code is derived, directly or indirectly, from the SystemC  source code Copyright (c) 1996-2006 by all Contributors.  All Rights reserved.  The contents of this file are subject to the restrictions and limitations  set forth in the SystemC Open Source License Version 2.4 (the "License");  You may not use this file except in compliance with such restrictions and  limitations. You may obtain instructions on how to receive a copy of the  License at http://www.systemc.org/. Software distributed by Contributors  under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF  ANY KIND, either express or implied. See the License for the specific  language governing rights and limitations under the License. *****************************************************************************//*****************************************************************************  fft.cpp - This is the implementation file for the synchronous process "fft".  Original Author: Rashmi Goswami, Synopsys, Inc. *****************************************************************************//*****************************************************************************  MODIFICATION LOG - modifiers, enter your name, affiliation, date and  changes you are making here.      Name, Affiliation, Date:  Description of Modification: *****************************************************************************//* This is the implementation file for the synchronous process "fft" */#include "systemc.h"#include "fft.h"//Function for butterfly computation void func_butterfly    ( const sc_int<16>& w_real   /* snps width 16 */,      const sc_int<16>& w_imag   /* snps width 16 */,       const sc_int<16>& real1_in /* snps width 16 */,      const sc_int<16>& imag1_in /* snps width 16 */,      const sc_int<16>& real2_in /* snps width 16 */,      const sc_int<16>& imag2_in /* snps width 16 */,      sc_int<16>& real1_out /* snps width 16 */,      sc_int<16>& imag1_out /* snps width 16 */,      sc_int<16>& real2_out /* snps width 16 */,      sc_int<16>& imag2_out /* snps width 16 */    ) {   // Variable declarations     sc_int<17> tmp_real1;     sc_int<17> tmp_imag1;     sc_int<17> tmp_real2;     sc_int<17> tmp_imag2;     sc_int<34> tmp_real3;     sc_int<34> tmp_imag3;      // Begin Computation    tmp_real1 = real1_in + real2_in;     // <s,6,10> = <s,5,10> + <s,5,10>    tmp_imag1 = imag1_in + imag2_in;    // <s,6,10> = <s,5,10> - <s,5,10>    tmp_real2 = real1_in - real2_in;    // <s,6,10> = <s,5,10> - <s,5,10>    tmp_imag2 = imag1_in - imag2_in;    //   <s,13,20> = <s,6,10>*<s,5,10> - <s,6,10>*<s,5,10>    tmp_real3 = tmp_real2*w_real - tmp_imag2*w_imag;    //   <s,13,20> = <s,6,10>*<s,5,10> - <s,6,10>*<s,5,10>    tmp_imag3 = tmp_real2*w_imag + tmp_imag2*w_real;     // assign the sign-bit(MSB)          real1_out[15] = tmp_real1[16];    imag1_out[15] = tmp_imag1[16];    // assign the rest of the bits    real1_out.range(14,0) = tmp_real1.range(14,0);    imag1_out.range(14,0) = tmp_imag1.range(14,0);   // assign the sign-bit(MSB)          real2_out[15] = tmp_real3[33];    imag2_out[15] = tmp_imag3[33];             // assign the rest of the bits    real2_out.range(14,0) = tmp_real3.range(24,10);    imag2_out.range(14,0) = tmp_imag3.range(24,10); }; // end func_butterflyvoid fft::entry(){  // Variable Declarations  sc_int<16> real[16];  sc_int<16> imag[16];  sc_int<16> tmp_real;  sc_int<16> tmp_imag;  short index;  sc_int<6> N;    sc_int<4> M;  sc_int<6> len;  sc_int<16> W_real[7];  sc_int<16> W_imag[7];  sc_int<16> w_real;  sc_int<16> w_imag;  sc_int<16> w_rec_real;  sc_int<16> w_rec_imag;  sc_int<32> w_temp1;  sc_int<32> w_temp2;  sc_int<32> w_temp3;  sc_int<32> w_temp4;  sc_int<33> w_temp5;  sc_int<33> w_temp6;  sc_int<16> real1_in;  sc_int<16> imag1_in;  sc_int<16> real2_in;  sc_int<16> imag2_in;  sc_int<16> real1_out;  sc_int<16> imag1_out;  sc_int<16> real2_out;  sc_int<16> imag2_out;  sc_int<4> stage;  short i;  short j;  short index2;  short windex;  short incr;  while(true)  { data_req.write(false);    data_ready.write(false);    index = 0;          wait();    //Read in the Sample values      cout << endl << "Reading in the samples..." << endl;      while( index < 16 )      {       data_req.write(true);       do { wait(); } while ( !(data_valid == true) );       tmp_real = in_real.read();       tmp_imag = in_imag.read();       real[index] = tmp_real;       imag[index] = tmp_imag;       index++;       data_req.write(false);       wait();      }      index = 0;        // Initialize       M = 4; N = 16;        len = N >> 1;       cout << "Computing..." << endl;       // Calculate the W-values recursively       // <'s'/'u',m,n>: is used in comments to denote a fixed point representation       // 's'- signed, 'u'- unsigned, m - no. of integer bits, n - no. of fractional bits       //  theta = 8.0*atan(1.0)/N; theta = 22.5 degree       //  w_real =  cos(theta) = 0.92 (000000.1110101110) <s,5,10>           w_real =  942;       //  w_imag = -sin(theta) = -0.38(111111.1001111010) <s,5,10>           w_imag = -389;       //  w_rec_real = 1(0000001.0000000000)	   w_rec_real = 1024;       //  w_rec_real = 0(000000.0000000000)	            w_rec_imag = 0;        unsigned short w_index;        w_index = 0;            while(w_index < 7)         {	  // <s,11,20> = <s,5,10> * <s,5,10>	   w_temp1 = w_rec_real*w_real;	   w_temp2 = w_rec_imag*w_imag;          // <s,11,20> = <s,5,10> * <s,5,10>	   w_temp3 = w_rec_real*w_imag;	   w_temp4 = w_rec_imag*w_real;	 	  // <s,6,10> = <s,5,10> - <s,5,10>           w_temp5 = w_temp1 - w_temp2;	  // <s,6,10> = <s,5,10> + <s,5,10>	   w_temp6 = w_temp3 + w_temp4;	   	  // assign the sign-bit(MSB)           W_real[w_index][15] = w_temp5[32];           W_imag[w_index][15] = w_temp6[32];	  // assign the rest of the bits           W_real[w_index].range(14,0) = w_temp5.range(24,10);           W_imag[w_index].range(14,0) = w_temp6.range(24,10);	  // update w_rec.. values for the next iteration	   w_rec_real = W_real[w_index];	   w_rec_imag = W_imag[w_index];	   w_index++;        }      //////////////////////////////////////////////////////////////////////////      ///  Computation - 1D Complex DFT In-Place DIF Computation Algorithm  ////      //////////////////////////////////////////////////////////////////////////       stage = 0;       len = N;       incr = 1;       while (stage < M)        { 	 len = len >> 1;         //First Iteration :  Simple calculation, with no multiplies          i = 0;          while(i < N)            {             index =  i; index2 = i + len;              tmp_real = real[index] + real[index2];             tmp_imag = imag[index] + imag[index2];             real[index2] = (real[index] - real[index2]);             imag[index2] = (imag[index] - imag[index2]);             real[index] = tmp_real;             imag[index] = tmp_imag;	    	     i = i + (len << 1);             }        //Remaining Iterations: Use Stored W         j = 1; windex = incr - 1;        // This loop executes N/2 times at the first stage, N/2 times at the second.. once at last stage         while (j < len)         {            i = j;             while (i < N)             {              index = i;              index2 = i + len;	      // Read in the data and twiddle factors	      w_real  = W_real[windex];	      w_imag  = W_imag[windex];              real1_in = real[index];	      imag1_in = imag[index];              real2_in = real[index2];	      imag2_in = imag[index2];              // Call butterfly computation function	     	      func_butterfly(w_real, w_imag, real1_in, imag1_in, real2_in, imag2_in, real1_out, imag1_out, real2_out, imag2_out);	      // Store back the results              real[index]  = real1_out;              imag[index]  = imag1_out;               real[index2] = real2_out;              imag[index2] = imag2_out;               i = i + (len << 1);            }            windex = windex + incr;            j++;         }          stage++;          incr = incr << 1;       }                 //////////////////////////////////////////////////////////////////////////        //Writing out the normalized transform values in bit reversed order     //////////////////////////////////////////////////////////////////////////      sc_uint<4> bits_i;      sc_uint<4> bits_index;      sc_int<16> real1;      sc_int<16> imag1;      bits_i = 0;      bits_index = 0;      i = 0;      cout << "Writing the transform values..." << endl;      while( i < 16)      {       bits_i = i;       bits_index[3]= bits_i[0];       bits_index[2]= bits_i[1];       bits_index[1]= bits_i[2];       bits_index[0]= bits_i[3];       index = bits_index;       real1 = real[index];       imag1 = imag[index];       out_real.write(real1);        out_imag.write(imag1);        data_ready.write(true);       do { wait(); } while ( !(data_ack == true) );       data_ready.write(false);       i++;       wait();      }      index = 0;       cout << "Done..." << endl;  }      }// end entry() function

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -