📄 geometry.cpp
字号:
/*
Copyright (c) 2000-2003, Jelle Kok, University of Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the University of Amsterdam nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*! \file Geometry.cpp
<pre>
<b>File:</b> Geometry.cpp
<b>Project:</b> Robocup Soccer Simulation Team: UvA Trilearn
<b>Authors:</b> Jelle Kok
<b>Created:</b> 13/02/2001
<b>Last Revision:</b> $ID$
<b>Contents:</b> class declarations of different geometry classes:<BR>
- VecPosition: representation of a point
- Line: representation of a line
- Rectangle: representation of a rectangle
- Circle: representation of a circle
- Geometry: different geometry methods
Furthermore it contains some goniometric functions to work with sine, cosine
and tangent functions using degrees and some utility functions to return
the maximum and the minimum of two values.
<hr size=2>
<h2><b>Changes</b></h2>
<b>Date</b> <b>Author</b> <b>Comment</b>
12/02/2001 Jelle Kok Initial version created
</pre>
*/
#include "Geometry.h"
#include <stdio.h> // needed for sprintf
#ifndef M_PI
#define M_PI 3.141593
#endif
/*! This function returns the sign of a give double.
1 is positive, -1 is negative
\param d1 first parameter
\return the sign of this double */
int sign( double d1 )
{
return (d1>0)?1:-1;
}
#ifndef WIN32
/*! This function returns the maximum of two given doubles.
\param d1 first parameter
\param d2 second parameter
\return the maximum of these two parameters */
double max( double d1, double d2 )
{
return (d1>d2)?d1:d2;
}
/*! This function returns the minimum of two given doubles.
\param d1 first parameter
\param d2 second parameter
\return the minimum of these two parameters */
double min( double d1, double d2 )
{
return (d1<d2)?d1:d2;
}
#endif
/*! This function converts an angle in radians to the corresponding angle in
degrees.
\param x an angle in radians
\return the corresponding angle in degrees */
AngDeg Rad2Deg( AngRad x )
{
return ( x * 180 / M_PI );
}
/*! This function converts an angle in degrees to the corresponding angle in
radians.
\param x an angle in degrees
\return the corresponding angle in radians */
AngRad Deg2Rad( AngDeg x )
{
return ( x * M_PI / 180 );
}
/*! This function returns the cosine of a given angle in degrees using the
built-in cosine function that works with angles in radians.
\param x an angle in degrees
\return the cosine of the given angle */
double cosDeg( AngDeg x )
{
return ( cos( Deg2Rad( x ) ) );
}
/*! This function returns the sine of a given angle in degrees using the
built-in sine function that works with angles in radians.
\param x an angle in degrees
\return the sine of the given angle */
double sinDeg( AngDeg x )
{
return ( sin( Deg2Rad( x ) ) );
}
/*! This function returns the tangent of a given angle in degrees using the
built-in tangent function that works with angles in radians.
\param x an angle in degrees
\return the tangent of the given angle */
double tanDeg( AngDeg x )
{
return ( tan( Deg2Rad( x ) ) );
}
/*! This function returns the principal value of the arc tangent of x
in degrees using the built-in arc tangent function which returns
this value in radians.
\param x a double value
\return the arc tangent of the given value in degrees */
AngDeg atanDeg( double x )
{
return ( Rad2Deg( atan( x ) ) );
}
/*! This function returns the principal value of the arc tangent of y/x in
degrees using the signs of both arguments to determine the quadrant of the
return value. For this the built-in 'atan2' function is used which returns
this value in radians.
\param x a double value
\param y a double value
\return the arc tangent of y/x in degrees taking the signs of x and y into
account */
double atan2Deg( double x, double y )
{
if( fabs( x ) < EPSILON && fabs( y ) < EPSILON )
return ( 0.0 );
return ( Rad2Deg( atan2( x, y ) ) );
}
/*! This function returns the principal value of the arc cosine of x in degrees
using the built-in arc cosine function which returns this value in radians.
\param x a double value
\return the arc cosine of the given value in degrees */
AngDeg acosDeg( double x )
{
if( x >= 1 )
return ( 0.0 );
else if( x <= -1 )
return ( 180.0 );
return ( Rad2Deg( acos( x ) ) );
}
/*! This function returns the principal value of the arc sine of x in degrees
using the built-in arc sine function which returns this value in radians.
\param x a double value
\return the arc sine of the given value in degrees */
AngDeg asinDeg( double x )
{
if( x >= 1 )
return ( 90.0 );
else if ( x <= -1 )
return ( -90.0 );
return ( Rad2Deg( asin( x ) ) );
}
/*! This function returns a boolean value which indicates whether the value
'ang' (from interval [-180..180] lies in the interval [angMin..angMax].
Examples: isAngInInterval( -100, 4, -150) returns false
isAngInInterval( 45, 4, -150) returns true
\param ang angle that should be checked
\param angMin minimum angle in interval
\param angMax maximum angle in interval
\return boolean indicating whether ang lies in [angMin..angMax] */
bool isAngInInterval( AngDeg ang, AngDeg angMin, AngDeg angMax )
{
// convert all angles to interval 0..360
if( ( ang + 360 ) < 360 ) ang += 360;
if( ( angMin + 360 ) < 360 ) angMin += 360;
if( ( angMax + 360 ) < 360 ) angMax += 360;
if( angMin < angMax ) // 0 ---false-- angMin ---true-----angMax---false--360
return angMin < ang && ang < angMax ;
else // 0 ---true--- angMax ---false----angMin---true---360
return !( angMax < ang && ang < angMin );
}
/*! This method returns the bisector (average) of two angles. It deals
with the boundary problem, thus when 'angMin' equals 170 and 'angMax'
equals -100, -145 is returned.
\param angMin minimum angle [-180,180]
\param angMax maximum angle [-180,180]
\return average of angMin and angMax. */
AngDeg getBisectorTwoAngles( AngDeg angMin, AngDeg angMax )
{
// separate sine and cosine part to circumvent boundary problem
return VecPosition::normalizeAngle(
atan2Deg( (sinDeg( angMin) + sinDeg( angMax ) )/2.0,
(cosDeg( angMin) + cosDeg( angMax ) )/2.0 ) );
}
/*****************************************************************************/
/******************* CLASS VECPOSITION ***********************************/
/*****************************************************************************/
/*! Constructor for the VecPosition class. When the supplied
Coordinate System type equals CARTESIAN, the arguments x and y
denote the x- and y-coordinates of the new position. When it
equals POLAR however, the arguments x and y denote the polar
coordinates of the new position; in this case x is thus equal to
the distance r from the origin and y is equal to the angle phi
that the polar vector makes with the x-axis.
\param x the x-coordinate of the new position when cs == CARTESIAN; the
distance of the new position from the origin when cs = POLAR
\param y the y-coordinate of the new position when cs = CARTESIAN; the
angle that the polar vector makes with the x-axis when cs = POLAR
\param cs a CoordSystemT indicating whether x and y denote cartesian
coordinates or polar coordinates
\return the VecPosition corresponding to the given arguments */
VecPosition::VecPosition( double x, double y, CoordSystemT cs )
{
setVecPosition( x, y, cs );
}
/*! Overloaded version of unary minus operator for VecPositions. It returns the
negative VecPosition, i.e. both the x- and y-coordinates are multiplied by
-1. The current VecPosition itself is left unchanged.
\return a negated version of the current VecPosition */
VecPosition VecPosition::operator - ( )
{
return ( VecPosition( -m_x, -m_y ) );
}
/*! Overloaded version of the binary plus operator for adding a given double
value to a VecPosition. The double value is added to both the x- and
y-coordinates of the current VecPosition. The current VecPosition itself is
left unchanged.
\param d a double value which has to be added to both the x- and
y-coordinates of the current VecPosition
\return the result of adding the given double value to the current
VecPosition */
VecPosition VecPosition::operator + ( const double &d )
{
return ( VecPosition( m_x + d, m_y + d ) );
}
/*! Overloaded version of the binary plus operator for VecPositions. It returns
the sum of the current VecPosition and the given VecPosition by adding their
x- and y-coordinates. The VecPositions themselves are left unchanged.
\param p a VecPosition
\return the sum of the current VecPosition and the given VecPosition */
VecPosition VecPosition::operator + ( const VecPosition &p )
{
return ( VecPosition( m_x + p.m_x, m_y + p.m_y ) );
}
/*! Overloaded version of the binary minus operator for subtracting a
given double value from a VecPosition. The double value is
subtracted from both the x- and y-coordinates of the current
VecPosition. The current VecPosition itself is left unchanged.
\param d a double value which has to be subtracted from both the x- and
y-coordinates of the current VecPosition
\return the result of subtracting the given double value from the current
VecPosition */
VecPosition VecPosition::operator - ( const double &d )
{
return ( VecPosition( m_x - d, m_y - d ) );
}
/*! Overloaded version of the binary minus operator for
VecPositions. It returns the difference between the current
VecPosition and the given VecPosition by subtracting their x- and
y-coordinates. The VecPositions themselves are left unchanged.
\param p a VecPosition
\return the difference between the current VecPosition and the given
VecPosition */
VecPosition VecPosition::operator - ( const VecPosition &p )
{
return ( VecPosition( m_x - p.m_x, m_y - p.m_y ) );
}
/*! Overloaded version of the multiplication operator for multiplying a
VecPosition by a given double value. Both the x- and y-coordinates of the
current VecPosition are multiplied by this value. The current VecPosition
itself is left unchanged.
\param d the multiplication factor
\return the result of multiplying the current VecPosition by the given
double value */
VecPosition VecPosition::operator * ( const double &d )
{
return ( VecPosition( m_x * d, m_y * d ) );
}
/*! Overloaded version of the multiplication operator for
VecPositions. It returns the product of the current VecPosition
and the given VecPosition by multiplying their x- and
y-coordinates. The VecPositions themselves are left unchanged.
\param p a VecPosition
\return the product of the current VecPosition and the given VecPosition */
VecPosition VecPosition::operator * ( const VecPosition &p )
{
return ( VecPosition( m_x * p.m_x, m_y * p.m_y ) );
}
/*! Overloaded version of the division operator for dividing a
VecPosition by a given double value. Both the x- and y-coordinates
of the current VecPosition are divided by this value. The current
VecPosition itself is left unchanged.
\param d the division factor
\return the result of dividing the current VecPosition by the given double
value */
VecPosition VecPosition::operator / ( const double &d )
{
return ( VecPosition( m_x / d, m_y / d ) );
}
/*! Overloaded version of the division operator for VecPositions. It
returns the quotient of the current VecPosition and the given
VecPosition by dividing their x- and y-coordinates. The
VecPositions themselves are left unchanged.
\param p a VecPosition
\return the quotient of the current VecPosition and the given one */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -