⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 onenand.c

📁 samsung 最新芯片2450 的测试程序.
💻 C
📖 第 1 页 / 共 3 页
字号:
				data_load++;
		}

		if (Size > (data_load*DATABUFFERSIZE)) {  // data load

			rOND_START_ADDR1 = DFS(block) | FBA(block);

			rOND_START_ADDR8 = FPA(page) | FSA(0);

			if (data_load&1)
				rOND_START_BUFFER = BSA(0xc) | BSC(0); // DataRAM1
			else
				rOND_START_BUFFER = BSA(0x8) | BSC(0); // DataRAM0

			rOND_START_ADDR2 = DBS(block);

			rOND_INT_STATUS = 0;

			rOND_COMMAND = OND_LD_MS_TO_BUF;

		}

		if (data_load > data_read) {  // data read. 105 us @50MHz 8,16,cont.-words

			rOND_START_ADDR2 = DBS(b_temp);
		
			if ((Size-(data_read*DATABUFFERSIZE)) >= DATABUFFERSIZE) // edit by junon
				d_size = DATABUFFERSIZE;
			else
				d_size = Size-(data_read*DATABUFFERSIZE);
			
			if (g_use_dma)
			{
				dma_copy_done = 0;
				if (data_read&0x1) // 87 us @50MHz 8,16,cont.-words
					dma_memcpy( __OND_DataRAM1_BASE, (U32)Address, d_size );
				else 
					dma_memcpy( __OND_DataRAM0_BASE, (U32)Address, d_size );
				while(!dma_copy_done);
			}
			else
			{
				if (data_read&0x1) // 87 us @50MHz 8,16,cont.-words
					memcpy( Address, (U32 *)__OND_DataRAM1_BASE, d_size );
					//memcpy_opt( Address, (U32 *)__OND_DataRAM1_BASE, d_size );
					//DMC8burstmemcpy((U32)__OND_DataRAM1_BASE, (U32)Address, d_size);
				else
					memcpy( Address, (U32 *)__OND_DataRAM0_BASE, d_size );
					//memcpy_opt( Address, (U32 *)__OND_DataRAM0_BASE, d_size );
					//DMC8burstmemcpy((U32)__OND_DataRAM1_BASE, (U32)Address, d_size);
			}

			Address+=(DATABUFFERSIZE>>2);
			data_read++;
		}

		b_temp = block;		
		page = (page+1)&0x3f;
		if (page==0) block++;
	}
}


//	Write-While-Program Operation, unit : page
void OND_write( U32 *Address, U32 Size, U16 block)
{
	U16	page;
	U32	data_program;
	U32	data_write;

	page = 0;
	data_program = 0;
	data_write = 0;

	if (!Size) {
		printf("The size is zero!! Retry this operation!! \n");	
		return;
	}

	while( Size >= (data_program*DATABUFFERSIZE)) { // edit by junon

		if (data_write > 0) {

			if (page==0) {
				OND_unlock_block(block);
				OND_erase_block(block);
			}

			rOND_START_ADDR1 = DFS(block) | FBA(block);
			rOND_START_ADDR8 = FPA(page) | FSA(0);

			if (data_program&1)	
				rOND_START_BUFFER = BSA(0xc) | BSC(0);
			else				
				rOND_START_BUFFER = BSA(0x8) | BSC(0);

			rOND_INT_STATUS = 0;
			rOND_COMMAND = OND_PG_MS_FR_BUF;

			page = (page+1) & 0x3f;
			if (page==0) block++;
		}
		
		// write data to DataRAM0 or 1
		if (Size >= (data_write*DATABUFFERSIZE)) {  // edit by junon
			if (data_write <= (data_program+1)) {

				rOND_START_ADDR2 = DBS(block);

				if (g_use_dma)
				{
					dma_copy_done = 0;
					if (data_write&1)
						dma_memcpy( (U32)Address, __OND_DataRAM1_BASE, DATABUFFERSIZE );
					else 
						dma_memcpy( (U32)Address, __OND_DataRAM0_BASE, DATABUFFERSIZE );
					while(!dma_copy_done);
				}
				else
				{
					if (data_write&1)
						memcpy( (U32 *)__OND_DataRAM1_BASE, Address, DATABUFFERSIZE);
//						memcpy_opt( (U32 *)__OND_DataRAM1_BASE, Address, DATABUFFERSIZE);
					else
						memcpy( (U32 *)__OND_DataRAM0_BASE, Address, DATABUFFERSIZE);
//						memcpy_opt( (U32 *)__OND_DataRAM0_BASE, Address, DATABUFFERSIZE);
				}
				
				Address+=(DATABUFFERSIZE>>2);
				data_write++;
			}
		}

		if (data_write > 1) {
			while (!(rOND_INT_STATUS & (1<<15)));

			if (rOND_CON_STATUS & (1<<10))
				printf("ECC Fail.\n");
			else			
				data_program++;
		}
	}
}


//======================== [ OneNAND test code ] ===========================
void OneNAND_ReadID( void)
{
	printf("\n\n< Read OneNAND information >\n");
	printf("Manufacturer ID       : 0x%02x\n",rOND_MANU);
	printf("Device ID             : 0x%02x\n",rOND_DEV);
	printf("Version ID            : 0x%02x\n",rOND_VER);
	printf("Data buffer size      : %d KB\n",((rOND_DBUFSIZE<<1)/(rOND_BUFAMOUNT>>8))>>10);
	printf("Boot buffer size      : %d KB\n",((rOND_BBUFSIZE<<1)/(rOND_BUFAMOUNT&0xff))>>10);
	printf("Amount of D/B buffers : %d, %d\n",rOND_BUFAMOUNT>>8,rOND_BUFAMOUNT&0xff);
	printf("Technology            : 0x%02x\n\n", rOND_TECH);
}


void OneNAND_Program( void)
{
	U16	block;
	U32	size;
	
	printf("\nOneNAND block program from [0x%08x]\n",(_NONCACHE_STARTADDRESS+0x00500000));

	printf("Enter block # to program : ");
	block = GetIntNum();

	printf("Enter size to program : ");
	size = GetIntNum();

	OND_write( (U32 *)(_NONCACHE_STARTADDRESS+0x00500000), size, block);

	printf("Program complete.\n");
}


void OneNAND_Read_Page( void)
{
	U16	block=0;
	U16	page=0;
	U32	i;
	U32	*Addr;

	printf("\nOneNAND block read\n");

	printf("Enter block # to read : ");
	block = GetIntNum();

	printf("Enter page # to read : ");
	page = GetIntNum();

	if (OND_page_load(block,page)==0) {

		Addr=(U32 *)__OND_DataRAM0_BASE;

		for(i=0;i<DATABUFFERSIZE;i+=sizeof(U32)) {

			if ((i&0x1f)==0)
				printf("\n%08x : ",i);

			printf("%08x ",*Addr++);
		
		}
		putchar('\n');
	}
}


void OneNAND_Write_Page( void)
{
	U16	block=0;
	U16	page=0;

	printf("\nOneNAND block write\n");

	printf("Enter block # to write : ");
	block = GetIntNum();

	printf("Enter page # to write : ");
	page = GetIntNum();

	if (OND_page_program(block,page)==0)
		printf("Block %d, page %d was writed.\n",block,page);

	printf("\n");
}


void OneNAND_Erase_All( void)
{
	U16	block;
	
	printf("\nOneNAND all block erase\n");
	
	for(block=0;block<1024;block++) {
		OND_unlock_block( block);
		OND_erase_block( block);
		if ((block&0x3f)==0)
			printf("[%d]",block);
	}

	printf("\nAll block was erased.\n");
	
	printf("\n");
}


void OneNAND_Erase_Block( void)
{
	U16	block=0;

	printf("\nOneNAND block erase\n");

	printf("Enter block # to erase : ");
	block = GetIntNum();
	
	OND_unlock_block( block);
	
	if (OND_erase_block( block)==0)
		printf("Block %d was erased.\n",block);
	
	printf("\n");
}


void OneNAND_Unlock_Block( void)
{
	U16	block=0;

	printf("\nOneNAND block unlock\n");

	printf("Enter block # to unlock : ");
	block = GetIntNum();
	
	OND_unlock_block( block);

	printf("\n");
}


void OneNAND_Lock_Block( void)
{
	U16	block=0;

	printf("\nOneNAND block lock\n");

	printf("Enter block # to lock : ");
	block = GetIntNum();
	
	OND_lock_block( block);
		
	printf("\n");
}


void SMC_Config4OneNAND(U32 nBank)
{
  	U32 sel_sync = 2;
  	U32 sel_burst = 4; 
  	U32 burst_mode = 1;
  	U32 mux_mode = 0;
	U16 sysconfig1;
	volatile SMC_REGS *pSmcRegs;
	
	pSmcRegs = (volatile SMC_REGS *)(SMC_REG_BASE+SMC_REG_OFFSET*nBank);

	g_use_dma = 0; // default setting = memcpy		
	printf("Select OneNAND interface mode, Demuxed mode(0-D)/Muxed mode(1) : ");
	mux_mode = GetIntNum();
	if (mux_mode == 1) 
		rSMBONETYPER |= (1<<nBank); // muxed mode
	else 				 
	{
		rSMBONETYPER &= ~(1<<nBank); // demuxed mode
		mux_mode = 0;
	}

	printf("Select OneNAND sync mode, Synchronous(1)/Asynchronous(2-D) : ");
	sel_sync = GetIntNum();
	if (sel_sync == 1)	
	{
		printf("Select OneNAND burst mode, no burst(0-D)/4-words(1)/8-words(2)/16-words(3)/Continuous(4) : ");
		sel_burst = GetIntNum();
		burst_mode = 1;
		if ( (sel_burst == (U32)(-1)) || (sel_burst == 0) )
		{
			sel_burst = 4;			
			burst_mode = 0; // default no burst
		}
	}

	// defualt setting for reading correct rOND_SYS_CONFIG1
	pSmcRegs->rSmbWstRdr = 4;	// read wait state. [4:0] 1 ~ 10. only 4 @ 50MHz(Mux). sync burst only 4
	pSmcRegs->rSmbWstWrr = 4;	// write wait state. [4:0] 1 ~ 10. min 3 @ 50MHz
	pSmcRegs->rSmbWstOenr = 3;	// OE assertion delay. [3:0] 1 ~ 2. min 3 @ 50MHz
	pSmcRegs->rSmbWstWenr = 3;	// WE assertion delay. [3:0] 1 ~ 3. min 3 @ 50MHz

	//  ensure that ther are no memory transfers.
	rCLKDIV0 = (rCLKDIV0 & ~(1<<3)) | (1<<3); // select HALFHCLK : 0=HCLK, 1=HCLK/2
	rSMCCR = (rSMCCR & ~(3<<1)) | (1<<1)|(1); // SMC MemClkRatio setting should be equal HALFHCLK of CLKDIV0
	pSmcRegs->rSmbIdCyr = 0;
	printf("rCLKDIV0 = 0x%x\n", rCLKDIV0);
	printf("rSMBIDCYR%d = 0x%x\n", nBank, pSmcRegs->rSmbIdCyr);
	//  wait 4 SMC clocks

	sysconfig1=rOND_SYS_CONFIG1; // reading 
	printf("rOND_SYS_CONFIG1 = 0x%x \n", sysconfig1);

	switch(sel_sync) {
		case 1: // sync.
			printf("rSMBCR%d = 0x%x \n", nBank, pSmcRegs->rSmbCr);
			// rOND_SYS_CONFIG1
			// [15] : sync(1), async(0), 
			// [12:14] : Burst read latency. same as WSTRD value in demux. 
			// [9:11] : Continuous(0), 4word(1), 8word(2), 16word(3), 32word(4) - only burst
#if SMCLK66MHZ // @66.7MHz
			rOND_SYS_CONFIG1 = (sysconfig1& ~(0x7f<<9))|(1<<15)|(4<<12)|((sel_burst%4)<<9);
#else // @50MHz
			rOND_SYS_CONFIG1 = (sysconfig1& ~(0x7f<<9))|(1<<15)|(3<<12)|((sel_burst%4)<<9);
#endif
			Delay(1);
			printf("sync = %d, sel burst = %d, burst mode = %d\n", sel_sync, sel_burst, burst_mode);
		
			// rSMBCR0
			// [10:11] : 4word(0), 8word(1), 16word(2), continuous(3) - only burst
			// [9] : sync(1), async(0)
			// [8] : burst(1), no burst(0)
			pSmcRegs->rSmbCr = (pSmcRegs->rSmbCr & ~((0xf<<8)|(0xf<<16)|(1<<14)|0x3)) 
							|((sel_burst-1)<<18)|(1<<17)|(burst_mode<<16) 	// set SSMC write 
							|((sel_burst-1)<<10)|(1<<9)|(burst_mode<<8) |(0<<7)	// set SSMC as read burst. 
							|(0<<14)|(0<<2)|(0<<1)|(1); // caution! SMWAIT polarity setting. now active low.
			//rSMBCR0 = 0x333211; Burst OK setting

			
			pSmcRegs->rSmbWstBrdr = 0;
			printf("rSMBONETYPER = 0x%x\n",rSMBONETYPER);
			printf("\nSynchronous access mode \n");

			if (mux_mode)
			{   				
#if SMCLK66MHZ // @66.7MHz
				pSmcRegs->rSmbWstRdr = 4;	// read wait state. [4:0]  min 3 @ 50MHz
				pSmcRegs->rSmbWstWrr = 4;	// write wait state. [4:0] min 3 @ 50MHz
				pSmcRegs->rSmbWstOenr = 3;	// OE assertion delay. [3:0] min 2 @ 50MHz
				pSmcRegs->rSmbWstWenr = 3;	// WE assertion delay. [3:0] min 2 @ 50MHz
#else // @50MHz
				pSmcRegs->rSmbWstRdr = 3;	// read wait state. [4:0] min 3 @ 50MHz
				pSmcRegs->rSmbWstWrr = 3;	// write wait state. [4:0] min 3 @ 50MHz
				pSmcRegs->rSmbWstOenr = 2;	// OE assertion delay. [3:0] min 2 @ 50MHz
				pSmcRegs->rSmbWstWenr = 2;	// WE assertion delay. [3:0] min 2 @ 50MHz
#endif
			}
			else 
			{
#if SMCLK66MHZ // @66.7MHz
				pSmcRegs->rSmbWstRdr = 4;	// read wait state. [4:0]  min 3 @ 50MHz
				pSmcRegs->rSmbWstWrr = 4;	// write wait state. [4:0] min 3 @ 50MHz
				pSmcRegs->rSmbWstOenr = 3;	// OE assertion delay. [3:0] min 2 @ 50MHz
				pSmcRegs->rSmbWstWenr = 3;	// WE assertion delay. [3:0] min 2 @ 50MHz
#else // @50MHz
				pSmcRegs->rSmbWstRdr = 3;	// read wait state. [4:0] min 3 @ 50MHz
				pSmcRegs->rSmbWstWrr = 3;	// write wait state. [4:0] min 3 @ 50MHz
				pSmcRegs->rSmbWstOenr = 2;	// OE assertion delay. [3:0] min 2 @ 50MHz
				pSmcRegs->rSmbWstWenr = 2;	// WE assertion delay. [3:0] min 2 @ 50MHz
#endif
			}
		break;
		default: // async.
			rOND_SYS_CONFIG1 = (sysconfig1& ~(0xf<<12))|(0<<15)|(3<<12);
			pSmcRegs->rSmbCr = (pSmcRegs->rSmbCr & ~(0xf<<8))|(0<<10)|(0<<9)|(0<<8); 	// set SSMC as async read. 
			printf("Asynchronous access mode \n");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -