⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mlc.c

📁 samsung 最新芯片2450 的测试程序.
💻 C
📖 第 1 页 / 共 3 页
字号:
    int i;
    U16 id;
    U8 id0, id1, id2, id3;
      
	NF_nFCE_L();

	NF_CMD(0x90);
	NF_ADDR(0x0);
	for (i=0; i<10; i++);

  	id0=NF_RDDATA8();	// Maker code 0xec
    id1=NF_RDDATA8();	// 
    id2=NF_RDDATA8();
    id3=NF_RDDATA8();
    
	id=(id0<<8)|id1;
 	NF_nFCE_H();
    printf("id0:0x%02x, id1:0x%02x,id2:0x%02x,id3:0x%02x \n", id0, id1, id2, id3);

    return id;
}


    
void Test_MLC_Adv_ECC(void)
{

    int i;
    U32 block, page;
	U32 blockPage, Mecc0, Mecc1, Mecc2, Mecc3, Mecc4, Mecc5, Mecc6, Mecc7, Secc;
	//U8 *bufPt=buffer;
	U8 *bufPt;
	
	
	MLC_EraseBlock(1);
	bufPt=(unsigned char *)0x31100000;

	NFConDone_MLC=0, NFECCEncDone=0, NFECCDecDone=0;
	
	rNFCONF = (rNFCONF & ~(1<<30))|(1<<24); // System Clock is more than 66Mhz, ECC type is MLC.
	rNFCONT |= (1<<18); //ECC for programming.
	
    rNFCONT|=(1<<9); // Enable RnB Interrupt 
    rNFCONT|=(1<<10); // Enable Illegal Access Interrupt
    
    rNFCONT|=(1<<13); // Enable ECC encoding & decoding conpletion interrupt enable
    rNFCONT|=(1<<12); // Enable ECC encoding & decoding conpletion interrupt enable
    
    
    pISR_NFCON= (unsigned)NFCon_Int_MLC;
    rSRCPND=BIT_NFCON;
    rINTMSK&=~(BIT_NFCON);
 
    /////////////////////////////////////////////////
    // block1, page0 writing with valid data, ecc   /
    /////////////////////////////////////////////////
    
    block=1;
    page=0;
    
	blockPage=(block<<7)+page;

	NF_nFCE_L(); 
	NF_CMD(0x0);//??????
	NF_CMD(0x80);   // Write 1st command
	NF_ADDR(0); 	// Column (A[7:0]) = 0
	NF_ADDR(0); 	// A[11:8]
	NF_ADDR((blockPage)&0xff);	// A[19:12]
	NF_ADDR((blockPage>>8)&0xff);	// A[27:20]
	NF_ADDR((blockPage>>16)&0xff);	// A[27:20]


// 0~511	
    NF_RSTECC();    // Initialize ECC
    NF_MECC_UnLock();
//    rNFCONT=0x43075;
    for(i=0;i<512;i++) {
		NF_WRDATA8(i);	// Write one page to NFM from buffer
    }
    NF_MECC_Lock();
     printf("1\n"); 
    while(!(rNFSTAT&(1<<7))) ;
    rNFSTAT|=(1<<7);
    
    printf("2\n"); 
 
   	Mecc0 = rNFMECC0;
	Mecc1 = rNFMECC1;

    
// 512~1023
    NF_RSTECC();    // Initialize ECC
    NF_MECC_UnLock();
    for(i=512;i<1024;i++) {
		NF_WRDATA8(i);	// Write one page to NFM from buffer
    }
   while(!(rNFSTAT&(1<<7))) ;
   rNFSTAT|=(1<<7);
   printf("3\n");  
	Mecc2 = rNFMECC0;
	Mecc3 = rNFMECC1;


// 1024~1535
    NF_RSTECC();    // Initialize ECC
    NF_MECC_UnLock();
    for(i=1024;i<1536;i++) {
		NF_WRDATA8(i);	// Write one page to NFM from buffer
    }
   while(!(rNFSTAT&(1<<7))) ;
   rNFSTAT|=(1<<7);

   Mecc4 = rNFMECC0;
   Mecc5 = rNFMECC1;

// 1536~2047
    NF_RSTECC();    // Initialize ECC
    NF_MECC_UnLock();
    for(i=1536;i<2048;i++) {
		NF_WRDATA8(i);	// Write one page to NFM from buffer
    }
   while(!(rNFSTAT&(1<<7))) ;
   rNFSTAT|=(1<<7);
    printf("4\n"); 
   	Mecc6 = rNFMECC0;
	Mecc7 = rNFMECC1;
    

	// Get ECC data.
	// Spare data for 8bit
	// byte  0     1    2     3    4     5     6     7      8      9
	// ecc  [0]  [1]  [2]  [3]    [4]   [5]   [6]                    
    	
	MLC_Buf[1]=(U8)(Mecc0&0xff);
	MLC_Buf[2]=(U8)((Mecc0>>8) & 0xff);
	MLC_Buf[3]=(U8)((Mecc0>>16) & 0xff);
	MLC_Buf[4]=(U8)((Mecc0>>24) & 0xff);
	MLC_Buf[5]=(U8)(Mecc1&0xff);
	MLC_Buf[6]=(U8)((Mecc1>>8) & 0xff);
	MLC_Buf[7]=(U8)((Mecc1>>16) & 0xff);
	
   	MLC_Buf[8]=(U8)(Mecc2&0xff);
	MLC_Buf[9]=(U8)((Mecc2>>8) & 0xff);
	MLC_Buf[10]=(U8)((Mecc2>>16) & 0xff);
	MLC_Buf[11]=(U8)((Mecc2>>24) & 0xff);
	MLC_Buf[12]=(U8)(Mecc3&0xff);
	MLC_Buf[13]=(U8)((Mecc3>>8) & 0xff);
	MLC_Buf[14]=(U8)((Mecc3>>16) & 0xff);
  	
    MLC_Buf[15]=(U8)(Mecc4&0xff);
	MLC_Buf[16]=(U8)((Mecc4>>8) & 0xff);
	MLC_Buf[17]=(U8)((Mecc4>>16) & 0xff);
	MLC_Buf[18]=(U8)((Mecc4>>24) & 0xff);
	MLC_Buf[19]=(U8)(Mecc5&0xff);
	MLC_Buf[20]=(U8)((Mecc5>>8) & 0xff);
	MLC_Buf[21]=(U8)((Mecc5>>16) & 0xff);

	MLC_Buf[22]=(U8)(Mecc6&0xff);
	MLC_Buf[23]=(U8)((Mecc6>>8) & 0xff);
	MLC_Buf[24]=(U8)((Mecc6>>16) & 0xff);
	MLC_Buf[25]=(U8)((Mecc6>>24) & 0xff);
	MLC_Buf[26]=(U8)(Mecc7&0xff);
	MLC_Buf[27]=(U8)((Mecc7>>8) & 0xff);
	MLC_Buf[28]=(U8)((Mecc7>>16) & 0xff);

	for(i=0;i<64;i++) {
		NF_WRDATA8(MLC_Buf[i]);	// Write spare array(Main ECC)
		MLC_Spare_Data[i]=MLC_Buf[i];
    }
      
  	NF_CLEAR_RB();
	NF_CMD(0x10);	 // Write 2nd command

	NF_DETECT_RB();
//	while(NFConDone_MLC==0);
  	rNFCONT&=~(1<<9);
	rNFCONT&=~(1<<10); // Disable Illegal Access Interrupt
	printf("5\n"); 
	if(rNFSTAT&0x20) 
	{
		printf("Illegal access Error\n"); 
		return;	
	}
    
	NF_CMD(0x70);   // Read status command   
    
	for(i=0;i<3;i++);  //twhr=60ns
    
    if (NF_RDDATA8()&0x1) {// Page write error
    	NF_nFCE_H();
		printf("first[PROGRAM_ERROR:block#=%d]\n",block);

		return;
    } else {
    	NF_nFCE_H();
	}
	
	/////////////////////////////////////////////////
    // block1, page1 writing with invalid data, ecc /
    /////////////////////////////////////////////////
    
    NFConDone_MLC=0;
    rSRCPND=BIT_NFCON;
    rINTMSK=~(BIT_NFCON);
        
    NF_RSTECC();    // Initialize ECC
    NF_MECC_UnLock();
    
	block=1;
    page=1;
    
	blockPage=(block<<7)+page;

	NF_nFCE_L(); 
	NF_CMD(0x0);//??????
	NF_CMD(0x80);   // Write 1st command
	NF_ADDR(0);			    // Column 0
	NF_ADDR(0);			    // Column 0
	NF_ADDR(blockPage&0xff);	    //
	NF_ADDR((blockPage>>8)&0xff);   // Block & page num.
	NF_ADDR((blockPage>>16)&0xff);  //

    //NF_RSTECC();    // Initialize ECC
    printf("6\n");
#if 0 //No Error
	for(i=0;i<512;i++) {
			NF_WRDATA8(i);
	}
#elif 1 //1-bit Error
	for(i=0;i<512;i++) {
		if(i==200) {
			NF_WRDATA8(0xc0);
		}
		else {
			NF_WRDATA8(i);
		}		
	}
#elif 0 //2-bit Error
	for(i=0;i<512;i++) {
		if(i==128) {
			NF_WRDATA8(129);
		}
		else if(i==255) {
			NF_WRDATA8(0x7f);
		}								
		else {
			NF_WRDATA8(i);
		}		
	}
#elif 0	//3-bit Error
	for(i=0;i<512;i++) {
		if(i==10) {
			NF_WRDATA8(11);
		}
		else if(i==511) {
			NF_WRDATA8(0xdf);
		}			
		else if(i==128)	{
			NF_WRDATA8(0x82);
		}					
		else {
			NF_WRDATA8(i);
		}
	}	
#elif 0  // 4-bit Error  
	for(i=0;i<512;i++) {
		if(i==10) {
			NF_WRDATA8(11);
		}
		else if(i==500) {
			NF_WRDATA8(0xf0);
		}			
		else if(i==200) {
			NF_WRDATA8(0xc0);
		}			
		else if(i==30) {
			NF_WRDATA8(0x16);
		}			
		else {
			NF_WRDATA8(i);
		}		
	}
#endif			
    
     
    while(!(rNFSTAT&(1<<7))) ;
    //while(NFECCEncDone==0);
    rNFSTAT|=(1<<7);

    
	Mecc0 = rNFMECC0;
	Mecc1 = rNFMECC1;
	
	// 512~1023
    NF_RSTECC();    // Initialize ECC
    NF_MECC_UnLock();
    for(i=512;i<1024;i++) {
		NF_WRDATA8(i);	// Write one page to NFM from buffer
    }
    
    while(!(rNFSTAT&(1<<7))) ;
    rNFSTAT|=(1<<7);

	Mecc2 = rNFMECC0;
	Mecc3 = rNFMECC1;
    
     
// 1024~1535
    NF_RSTECC();    // Initialize ECC
    NF_MECC_UnLock();
    for(i=1024;i<1536;i++) {
		NF_WRDATA8(i);	// Write one page to NFM from buffer
    }
    
    while(!(rNFSTAT&(1<<7))) ;
    rNFSTAT|=(1<<7);
    
    Mecc4 = rNFMECC0;
	Mecc5 = rNFMECC1;
    
// 1536~2047
    NF_RSTECC();    // Initialize ECC
    NF_MECC_UnLock();
    for(i=1536;i<2048;i++) {
		NF_WRDATA8(i);	// Write one page to NFM from buffer
    }
    
    while(!(rNFSTAT&(1<<7))) ;
    rNFSTAT|=(1<<7);
    
    
    Mecc6 = rNFMECC0;
	Mecc7 = rNFMECC1;

	
	for(i=0;i<64;i++) {
		NF_WRDATA8(MLC_Buf[i]);	// Write spare array(Main ECC)
		MLC_Spare_Data[i]=MLC_Buf[i];
    }
   	
   	printf("7\n");	
 	NF_CLEAR_RB();
	NF_CMD(0x10);	 // Write 2nd command
	NF_DETECT_RB();
	//while(NFConDone_MLC==0);
	rNFCONT&=~(1<<9);
	rNFCONT&=~(1<<10); // Disable Illegal Access Interrupt
	if(rNFSTAT&0x20)	{
		printf("Error\n"); 
		return;	
	}

	NF_CMD(0x70);   // Read status command   
    
	for(i=0;i<30;i++);  //twhr=60ns
    
    if (NF_RDDATA8()&0x1) {// Page write error
    	NF_nFCE_H();
		printf("Second[PROGRAM_ERROR:block#=%d]\n",block);

		return;
    } else {
    	NF_nFCE_H();		
	}
	
    
	/////////////////////////////////////////////////
    // block1, page1 reading with invalid data, ecc /
    /////////////////////////////////////////////////
   pISR_NFCON= (unsigned)NFCon_Int_MLC;
    rSRCPND=BIT_NFCON;
    rINTMSK&=~(BIT_NFCON);
 
    
	block=1;
	page=1;
    blockPage=(block<<7)+page;

        
	rNFCONF = (rNFCONF & ~(1<<30))|(1<<24); // System Clock is more than 66Mhz, ECC type is MLC.
	rNFCONT &= ~(1<<18); //ECC for reading.
	    
	NF_RSTECC();    // Initialize ECC
	NF_MECC_UnLock();
    
   	NF_nFCE_L();
	NF_CLEAR_RB();

     	   
	NF_CMD(0x00);	// Read command
    NF_ADDR(0); 	// Column (A[7:0]) = 0
    NF_ADDR(0);		// A[11:8]
    NF_ADDR((blockPage)&0xff);	// A[19:12]
    NF_ADDR((blockPage>>8)&0xff);	// A[27:20]
    NF_ADDR((blockPage>>16)&0xff);	// A[27:20]
      
    NF_CMD(0x30);	// 2'nd command
    
    NF_DETECT_RB();
    
 //   rNFCONT=0x3045;
    printf("8\n");
    for(i=0;i<512;i++) {
    	*bufPt++=NF_RDDATA8();	// Read one page
    }
   
 //   NF_MECC_Lock();
    NF_CMD(0x05);
    NF_ADDR((2048+1)&0xff);			// 2060 = 0x080c
	NF_ADDR(((2048+1)>>8)&0xff);		// A[10:8]
	NF_CMD(0xe0);
	for(i=0;i<10;i++);
	for(i=1;i<8;i++) {
    	MLC_Spare_Data[i]=NF_RDDATA8();	// Read one page
    }
    printf("9\n");
    while(!(rNFSTAT&(1<<6)));
//	while(NFECCDecDone==0);
    rNFSTAT|=(1<<6);
      	printf("1st ECC check!\n");
 	if ((rNFECCERR0&(0x7<<26)) == 0x0){
	       printf("ECC OK!\n");
//		return;
	 }
	else {
		printf("ECC FAIL!\n");
		printf("status0:0x%x|status1:0x%x|bit:0x%x\n", rNFECCERR0, rNFECCERR1, rNFMLCBITPT);
//	    return;
	 }


// 512 ~ 1023
    NF_RSTECC();    // Initialize ECC
//    NF_MECC_UnLock();
    NF_CMD(0x05);
    NF_ADDR((512)&0xff);			// 2060 = 0x080c
	NF_ADDR(((512)>>8)&0xff);		// A[10:8]
	NF_CMD(0xe0);
	for(i=0;i<10;i++);
	for(i=0;i<512;i++) {
    	*bufPt++=NF_RDDATA8();	// Read one page
    }
    
//    NF_MECC_Lock();
	
	NF_CMD(0x05);
    NF_ADDR((2048+8)&0xff);			// 2060 = 0x080c
	NF_ADDR(((2048+8)>>8)&0xff);		// A[10:8]
	NF_CMD(0xe0);
	for(i=0;i<10;i++);
	for(i=8;i<15;i++) {
    	MLC_Spare_Data[i]=NF_RDDATA8();	// Read one page
    }
      while(!(rNFSTAT&(1<<6))) ;
//    while(NFECCDecDone==0);
	  rNFSTAT|=(1<<6);
    
		printf("2nd ECC check!\n");
	 if ((rNFECCERR0&(0x7<<26)) == 0x0){
	       printf("ECC OK!\n");
//		return;
	 }
	 else {
		printf("ECC FAIL!\n");
		printf("status0:0x%x|status1:0x%x|bit:0x%x\n", rNFECCERR0, rNFECCERR1, rNFMLCBITPT);
//	    return;
	 }


// 1024 ~ 1535
    NF_RSTECC();    // Initialize ECC
//    NF_MECC_Lock();
    NF_CMD(0x05);
    NF_ADDR((1024)&0xff);			// 2060 = 0x080c
	NF_ADDR(((1024)>>8)&0xff);		// A[10:8]
	NF_CMD(0xe0);
	for(i=0;i<10;i++);
	for(i=0;i<512;i++) {
    	*bufPt++=NF_RDDATA8();	// Read one page
    }
    
//    NF_MECC_Lock();
    
	NF_CMD(0x05);
    NF_ADDR((2048+15)&0xff);			// 2060 = 0x080c
	NF_ADDR(((2048+15)>>8)&0xff);		// A[10:8]
	NF_CMD(0xe0);
	for(i=0;i<10;i++);
	for(i=15;i<22;i++) {
    	MLC_Spare_Data[i]=NF_RDDATA8();	// Read one page
    }
     
	    while(!(rNFSTAT&(1<<6))) ;
//    while(NFECCDecDone==0);
    rNFSTAT|=(1<<6);
    
		printf("3rd ECC check!\n");
	 if ((rNFECCERR0&(0x7<<26)) == 0x0){
	       printf("ECC OK!\n");
//		return;
	 }
	 else {
		printf("ECC FAIL!\n");
		printf("status0:0x%x|status1:0x%x|bit:0x%x\n", rNFECCERR0, rNFECCERR1, rNFMLCBITPT);
//	    return;
	 }

	
// 1536 ~ 2047
    NF_RSTECC();    // Initialize ECC
//    NF_MECC_UnLock();
    NF_CMD(0x05);
    NF_ADDR((1536)&0xff);			// 2060 = 0x080c
	NF_ADDR(((1536)>>8)&0xff);		// A[10:8]
	NF_CMD(0xe0);
	for(i=0;i<10;i++);
	for(i=0;i<512;i++) {
    	*bufPt++=NF_RDDATA8();	// Read one page
    }
    
    
//    NF_MECC_Lock();
	
	NF_CMD(0x05);
    NF_ADDR((2048+22)&0xff);			// 2060 = 0x080c
	NF_ADDR(((2048+22)>>8)&0xff);		// A[10:8]
	NF_CMD(0xe0);
	for(i=0;i<10;i++);
	for(i=22;i<29;i++) {
    	MLC_Spare_Data[i]=NF_RDDATA8();	// Read one page
    }

	    while(!(rNFSTAT&(1<<6))) ;
//    while(NFECCDecDone==0);
    rNFSTAT|=(1<<6);
    
    
	printf("4th ECC check!\n");
	 if ((rNFECCERR0&(0x7<<26)) == 0x0){
	       printf("ECC OK!\n");
//		return;
	 }
	 else {
		printf("ECC FAIL!\n");
		printf("status0:0x%x|status1:0x%x|bit:0x%x\n", rNFECCERR0, rNFECCERR1, rNFMLCBITPT);
//	    return;
	 }

	  
	
     NF_nFCE_H();    


	
}



static void MLC_Init(void)
{
	// for S3C2443

	rNFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);	
	// TACLS		[14:12]	CLE&ALE duration = HCLK*TACLS.
	// TWRPH0		[10:8]	TWRPH0 duration = HCLK*(TWRPH0+1)
	// TWRPH1		[6:4]	TWRPH1 duration = HCLK*(TWRPH1+1)
	// AdvFlash(R)	[3]		Advanced NAND, 0:256/512, 1:1024/2048
	// PageSize(R)	[2]		NAND memory page size
	//						when [3]==0, 0:256, 1:512 bytes/page.
	//						when [3]==1, 0:1024, 1:2048 bytes/page.
	// AddrCycle(R)	[1]		NAND flash addr size
	//						when [3]==0, 0:3-addr, 1:4-addr.
	//						when [3]==1, 0:4-addr, 1:5-addr.
	// BusWidth(R/W) [0]	NAND bus width. 0:8-bit, 1:16-bit.
	
	rNFCONT = (0<<17)|(0<<16)|(0<<10)|(0<<9)|(0<<8)|(1<<7)|(1<<6)|(1<<5)|(1<<4)|(0x3<<1)|(1<<0);
	// Lock-tight	[17]	0:Disable lock, 1:Enable lock.
	// Soft Lock	[16]	0:Disable lock, 1:Enable lock.
	// EnablillegalAcINT[10]	Illegal access interupt control. 0:Disable, 1:Enable
	// EnbRnBINT	[9]		RnB interrupt. 0:Disable, 1:Enable
	// RnB_TrandMode[8]		RnB transition detection config. 0:Low to High, 1:High to Low
	// SpareECCLock	[7]		0:Unlock, 1:Lock
	// MainECCLock	[6]		0:Unlock, 1:Lock
	// InitMECC(W)	[5]		1:Init main area ECC decoder/encoder.
	// InitSECC(W)	[4]		1:Init spare area ECC decoder/encoder.
	// Reg_nCE1		[2]		0:nFCE=0, 1:nFCE=1.
	// Reg_nCE0		[1]		0:nFCE=0, 1:nFCE=1.
	// NANDC Enable	[0]		operating mode. 0:Disable, 1:Enable.
}


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -