⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nand2_star_en.java

📁 The ElectricTM VLSI Design System is an open-source Electronic Design Automation (EDA) system that c
💻 JAVA
字号:
/* -*- tab-width: 4 -*- * * Electric(tm) VLSI Design System * * File: Nand2_star_en.java * * Copyright (c) 2003 Sun Microsystems and Static Free Software * * Electric(tm) is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * Electric(tm) is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Electric(tm); see the file COPYING.  If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, Mass 02111-1307, USA. */package com.sun.electric.tool.generator.layout.gates;import com.sun.electric.database.hierarchy.Cell;import com.sun.electric.database.prototype.PortCharacteristic;import com.sun.electric.tool.generator.layout.FoldedMos;import com.sun.electric.tool.generator.layout.FoldedNmos;import com.sun.electric.tool.generator.layout.FoldedPmos;import com.sun.electric.tool.generator.layout.FoldsAndWidth;import com.sun.electric.tool.generator.layout.LayoutLib;import com.sun.electric.tool.generator.layout.StdCellParams;import com.sun.electric.tool.generator.layout.Tech;import com.sun.electric.tool.generator.layout.TechType;import com.sun.electric.tool.generator.layout.TrackRouter;import com.sun.electric.tool.generator.layout.TrackRouterH;public class Nand2_star_en {	private static final double wellOverhangDiff = 6;	private static final double outHiY = 11.0;	private static final double outLoY = -11.0;	private static final double wirePitch = 7;	private static final double wireWithPolyPitch = 8;	// p1m1_wid/2 + p1_mos_sp	private static final double pmosBot = wireWithPolyPitch/2 + 5./2 + 2;	private static final double nmosTop = -pmosBot;	private static final double inbY = wireWithPolyPitch/2;	private static final double inaY = -wireWithPolyPitch/2;	private static final double pmosPitch = 26;    	private static void error(boolean pred, String msg) {		LayoutLib.error(pred, msg);	}		public static Cell makePart(double sz, String threshold, StdCellParams stdCell) {		TechType tech = stdCell.getTechType();		error(!threshold.equals("") && !threshold.equals("LT")				  && !threshold.equals("HT"),				  "Nand2_star_en: threshold not \"\", \"LT\", or \"HT\": " + threshold);		String nm = "nand2"+threshold+"en";		sz = stdCell.roundSize(sz);		sz = stdCell.checkMinStrength(sz,									  threshold.equals("LT") ? 1 : .5,									  nm);				// Compute number of folds and width for NMOS		int nbSeriesN = 2;		double spaceAvail = nmosTop - (stdCell.getCellBot() + wellOverhangDiff);		double totWid = sz * nbSeriesN * 3;		FoldsAndWidth fwN = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 1);		error(fwN==null, "can't make "+nm+" this small: "+sz);				// Compute number of folds and width for PMOS.		spaceAvail = stdCell.getCellTop() - wellOverhangDiff - pmosBot;		totWid = sz * 6;		if (threshold.equals("HT")) totWid = totWid * 2;		else if (threshold.equals("LT")) totWid = totWid / 2;		FoldsAndWidth fwP = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 1);		error(fwP==null, "can't make "+nm+" this small: "+sz);				// Compute number of folds and width for weak PMOS		totWid = Math.max(totWid / 10, 5);		FoldsAndWidth fwW = stdCell.calcFoldsAndWidth(spaceAvail, totWid, 1);		error(fwW==null, "can't make "+nm+" this small: "+sz);				// create Nand Part		Cell nand = stdCell.findPart(nm, sz);		if (nand!=null) return nand;		nand = stdCell.newPart(nm, sz);				// leave vertical m1 track for inb		double inbX = wirePitch/2;				// NMOS width dominates width of nand. Allocate it in one FoldedNmos		double nmosX = inbX + wirePitch;		double nmosY = nmosTop - fwN.physWid/2;		FoldedMos nmos = new FoldedNmos(nmosX, nmosY, fwN.nbFolds, nbSeriesN,										fwN.gateWid, nand, tech);				// Build regular strength PMOS.  Allocate two folds per		// FoldedPmos. Align PMOS gate 0 with NMOS gate 1.		double pmosX = nmosX + 5;		double pmosY = pmosBot + fwP.physWid/2;		FoldedMos[] pmoss = new FoldedMos[(fwP.nbFolds+1)/2];		for (int nbFoldsP=0; nbFoldsP<fwP.nbFolds; nbFoldsP+=2) {			double x = pmosX + (nbFoldsP/2)*pmosPitch;			int nbFolds = Math.min(2, fwP.nbFolds - nbFoldsP);			FoldedMos pmos = new FoldedPmos(x, pmosY, nbFolds, 1, fwP.gateWid,											nand, tech);			pmoss[nbFoldsP/2] = pmos;		}		stdCell.fillDiffAndSelectNotches(pmoss, true);				// Build weak PMOS.  Allocate two folds per FoldedPmos. Align PMOS		// gate 0 with NMOS gate k such that (k mod 4 == 3).		double rightPdiffX = StdCellParams.getRightDiffX(pmoss);		double rightNdiffX = StdCellParams.getRightDiffX(nmos);		double weakX = Math.max(rightPdiffX+11, rightNdiffX+2.5);		double weakY = pmosBot + fwW.physWid/2;		FoldedMos weak = new FoldedPmos(weakX, weakY, fwW.nbFolds, 1,										fwW.gateWid, nand, tech);		// create vdd and gnd exports and connect to MOS source/drains		stdCell.wireVddGnd(nmos, StdCellParams.EVEN, nand);		FoldedMos[] allPmoss = new FoldedMos[pmoss.length+1];		for (int i=0; i<pmoss.length; i++) allPmoss[i] = pmoss[i];		allPmoss[pmoss.length] = weak;		stdCell.wireVddGnd(allPmoss, StdCellParams.EVEN, nand);        // Only for TSMC180 for now ?        // Fill select notch between last pmos and weak transistor        FoldedMos[] tmp = {pmoss[pmoss.length-1], weak};        stdCell.fillDiffAndSelectNotches(tmp, false);		// Nand input: inb		// m1_wid + m1_space + m1_wid/2		LayoutLib.newExport(nand, "inb", PortCharacteristic.IN, tech.m1(),							4, inbX, inbY);		TrackRouter inb = new TrackRouterH(tech.m1(), 3, inbY, tech, nand);		inb.connect(nand.findExport("inb"));		for (int i=0; i<pmoss.length; i++) {			FoldedMos pmos = pmoss[i];			inb.connect(pmos.getGate(0, 'B'), 4, tech.getPolyLShapeOffset());			if (pmos.nbGates()==2) {				inb.connect(pmos.getGate(1, 'B'), -4, tech.getPolyLShapeOffset());			}		}		for (int i=0; i<nmos.nbGates(); i+=2) {			if (i/2 %2 == 0) {				inb.connect(nmos.getGate(i+1, 'T'), 4, -tech.getPolyTShapeOffset());			} else {				inb.connect(nmos.getGate(i, 'T'), -4, -tech.getPolyTShapeOffset());			}		}				// Nand input: ina		double rightDiffX = StdCellParams.getRightDiffX(weak, weak);		double inaX = rightDiffX + wirePitch;		LayoutLib.newExport(nand, "ina", PortCharacteristic.IN, tech.m1(),							4, inaX, inaY);		TrackRouter ina = new TrackRouterH(tech.m1(), 3, inaY, tech, nand);		ina.connect(nand.findExport("ina"));		for (int i=0; i<weak.nbGates(); i++) {			ina.connect(weak.getGate(i, 'B'), 1.5, tech.getPolyLShapeOffset());		}		for (int i=0; i<nmos.nbGates(); i+=2) {			if (i/2 % 2 == 0) {				ina.connect(nmos.getGate(i, 'T'), -4, -tech.getPolyLShapeOffset());			} else {				ina.connect(nmos.getGate(i+1, 'T'), 4, -tech.getPolyLShapeOffset());			}		}				// Nand output: out		double outX = inaX + wirePitch;		LayoutLib.newExport(nand, "out", PortCharacteristic.OUT, tech.m1(),							4, outX, outHiY);		TrackRouter outHi = new TrackRouterH(tech.m2(), 4, outHiY, tech, nand);		outHi.connect(nand.findExport("out"));		for (int i=0; i<pmoss.length; i++) {			outHi.connect(pmoss[i].getSrcDrn(1));		}		for (int i=1; i<weak.nbSrcDrns(); i+=2) {			outHi.connect(weak.getSrcDrn(i));		}				TrackRouter outLo = new TrackRouterH(tech.m2(), 4, outLoY, tech, nand);		outLo.connect(nand.findExport("out"));		for (int i=1; i<nmos.nbSrcDrns(); i+=2) {			outLo.connect(nmos.getSrcDrn(i));		}        // Due to weak transistors on the right        // ============================//        StdCellParams.fillSelect(nand, true, false, false);        // ============================		// add wells		double wellMinX = 0;		double wellMaxX = outX + 2 + 1.5; // m1_wid/2 + m1m1_space/2		stdCell.addNmosWell(wellMinX, wellMaxX, nand);		stdCell.addPmosWell(wellMinX, wellMaxX, nand);				// add essential bounds		stdCell.addEssentialBounds(wellMinX, wellMaxX, nand);				// perform Network Consistency Check		stdCell.doNCC(nand, nm+"{sch}");				return nand;	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -