⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ddr.v

📁 256Mb_ddr 实现ddr_dimm操作
💻 V
📖 第 1 页 / 共 4 页
字号:
/****************************************************************************************
*
*    File Name:  ddr.v
*
*****************************************************************************************/

// DO NOT CHANGE THE TIMESCALE
// MAKE SURE YOUR SIMULATOR USE "PS" RESOLUTION
`timescale 1ns / 1ps

module ddr (Clk, Clk_n, Cke, Cs_n, Ras_n, Cas_n, We_n, Ba , Addr, Dm, Dq, Dqs);
    `include "ddr_parameters.vh"

    // Port Declarations
    input                         Clk;
    input                         Clk_n;
    input                         Cke;
    input                         Cs_n;
    input                         Ras_n;
    input                         Cas_n;
    input                         We_n;
    input                 [1 : 0] Ba;
    input     [ADDR_BITS - 1 : 0] Addr;
    input       [DM_BITS - 1 : 0] Dm;
    inout       [DQ_BITS - 1 : 0] Dq;
    inout      [DQS_BITS - 1 : 0] Dqs;

    // Internal Wires (fixed width)
    wire                 [31 : 0] Dq_in;
    wire                  [3 : 0] Dqs_in;
    wire                  [3 : 0] Dm_in;
    
    assign Dq_in   [DQ_BITS - 1 : 0] = Dq;
    assign Dqs_in [DQS_BITS - 1 : 0] = Dqs;
    assign Dm_in   [DM_BITS - 1 : 0] = Dm;

    // Data pair
    reg                  [31 : 0] dq_rise;
    reg                   [3 : 0] dm_rise;
    reg                  [31 : 0] dq_fall;
    reg                   [3 : 0] dm_fall;
    reg                   [7 : 0] dm_pair;
    reg                  [31 : 0] Dq_buf;
    
    // Mode Register
    reg       [ADDR_BITS - 1 : 0] Mode_reg;

    // Internal System Clock
    reg                           CkeZ, Sys_clk;

    // Internal Dqs initialize
    reg                           Dqs_int;

    // Dqs buffer
    reg        [DQS_BITS - 1 : 0] Dqs_out;

    // Dq buffer
    reg         [DQ_BITS - 1 : 0] Dq_out;

    // Read pipeline variables
    reg                           Read_cmnd [0 : 6];
    reg                   [1 : 0] Read_bank [0 : 6];
    reg        [COL_BITS - 1 : 0] Read_cols [0 : 6];

    // Write pipeline variables
    reg                           Write_cmnd [0 : 3];
    reg                   [1 : 0] Write_bank [0 : 3];
    reg        [COL_BITS - 1 : 0] Write_cols [0 : 3];

    // Auto precharge variables
    reg                           Read_precharge  [0 : 3];
    reg                           Write_precharge [0 : 3];
    integer                       Count_precharge [0 : 3];

    // Manual precharge variables
    reg                           A10_precharge  [0 : 6];
    reg                   [1 : 0] Bank_precharge [0 : 6];
    reg                           Cmnd_precharge [0 : 6];

    // Burst terminate variables
    reg                           Cmnd_bst [0 : 6];

    // Memory Banks
`ifdef FULL_MEM
    reg         [DQ_BITS - 1 : 0] mem_array  [0 : (1<<full_mem_bits)-1];
`else
    reg         [DQ_BITS - 1 : 0] mem_array  [0 : (1<<part_mem_bits)-1];
    reg   [full_mem_bits - 1 : 0] addr_array [0 : (1<<part_mem_bits)-1];
    reg   [part_mem_bits     : 0] mem_used;
    initial mem_used = 0;
`endif

    // Dqs edge checking
    integer i;
    reg  [3 :0] expect_pos_dqs;
    reg  [3 :0] expect_neg_dqs;

    // Burst counter
    reg        [COL_BITS - 1 : 0] Burst_counter;

    // Precharge variables
    reg                           Pc_b0, Pc_b1, Pc_b2, Pc_b3;

    // Activate variables
    reg                           Act_b0, Act_b1, Act_b2, Act_b3;

    // Data IO variables
    reg                           Data_in_enable;
    reg                           Data_out_enable;

    // Internal address mux variables
    reg                   [1 : 0] Prev_bank;
    reg                   [1 : 0] Bank_addr;
    reg        [COL_BITS - 1 : 0] Cols_addr, Cols_brst, Cols_temp;
    reg       [ADDR_BITS - 1 : 0] Rows_addr;
    reg       [ADDR_BITS - 1 : 0] B0_row_addr;
    reg       [ADDR_BITS - 1 : 0] B1_row_addr;
    reg       [ADDR_BITS - 1 : 0] B2_row_addr;
    reg       [ADDR_BITS - 1 : 0] B3_row_addr;

    // DLL Reset variable
    reg                           DLL_enable;
    reg                           DLL_reset;
    reg                           DLL_done;
    integer                       DLL_count;
    integer                       aref_count;
    integer                       Prech_count;
    reg                           power_up_done;

    // Write DQS for tDSS, tDSH, tDQSH, tDQSL checks
    wire      wdqs_valid = Write_cmnd[2] || Write_cmnd[1] || Data_in_enable;

    // Commands Decode
    wire      Active_enable   = ~Cs_n & ~Ras_n &  Cas_n &  We_n;
    wire      Aref_enable     = ~Cs_n & ~Ras_n & ~Cas_n &  We_n;
    wire      Burst_term      = ~Cs_n &  Ras_n &  Cas_n & ~We_n;
    wire      Ext_mode_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n &  Ba[0] & ~Ba[1];
    wire      Mode_reg_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n & ~Ba[0] & ~Ba[1];
    wire      Prech_enable    = ~Cs_n & ~Ras_n &  Cas_n & ~We_n;
    wire      Read_enable     = ~Cs_n &  Ras_n & ~Cas_n &  We_n;
    wire      Write_enable    = ~Cs_n &  Ras_n & ~Cas_n & ~We_n;

    // Burst Length Decode
    wire [3:0] burst_length = 1 << (Mode_reg[2:0]);
    reg  [3:0] read_precharge_truncation;
    // CAS Latency Decode
    wire [2:0] cas_latency_x2 = (Mode_reg[6:4] === 3'o6) ? 5 : 2*Mode_reg[6:4];

    // DQS Buffer
    assign    Dqs = Dqs_out;

    // DQ Buffer
    assign    Dq  = Dq_out;

    // Timing Check
    time      MRD_chk;
    time      RFC_chk;
    time      RRD_chk;
    time      RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
    time      RAP_chk0, RAP_chk1, RAP_chk2, RAP_chk3;
    time      RC_chk0, RC_chk1, RC_chk2, RC_chk3;
    time      RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
    time      RP_chk0, RP_chk1, RP_chk2, RP_chk3;
    time      WR_chk0, WR_chk1, WR_chk2, WR_chk3;

    initial begin
        CkeZ = 1'b0;
        Sys_clk = 1'b0;
        {Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;
        {Act_b0, Act_b1, Act_b2, Act_b3} = 4'b1111;
        Dqs_int = 1'b0;
        Dqs_out = {DQS_BITS{1'bz}};
        Dq_out = {DQ_BITS{1'bz}};
        Data_in_enable = 1'b0;
        Data_out_enable = 1'b0;
        DLL_enable = 1'b0;
        DLL_reset = 1'b0;
        DLL_done = 1'b0;
        DLL_count = 0;
        aref_count = 0;
        Prech_count = 0;
        power_up_done = 0;
        MRD_chk = 0;
        RFC_chk = 0;
        RRD_chk = 0;
        {RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;
        {RAP_chk0, RAP_chk1, RAP_chk2, RAP_chk3} = 0;
        {RC_chk0, RC_chk1, RC_chk2, RC_chk3} = 0;
        {RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;
        {RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;
        {WR_chk0, WR_chk1, WR_chk2, WR_chk3} = 0;
        $timeformat (-9, 3, " ns", 12);
    end

    // System Clock
    always begin
        @ (posedge Clk) begin
            Sys_clk = CkeZ;
            CkeZ = Cke;
        end
        @ (negedge Clk) begin
            Sys_clk = 1'b0;
        end
    end

    // Check to make sure that we have a Deselect or NOP command on the bus when CKE is brought high
    always @(Cke) begin
        if (Cke === 1'b1) begin
            if (!((Cs_n) || (~Cs_n &  Ras_n & Cas_n &  We_n))) begin
                $display ("%m: at time %t MEMORY ERROR:  You must have a Deselect or NOP command applied", $time);
                $display ("%m:           when the Clock Enable is brought High.");
            end 
        end
    end

    // Check the initialization sequence
    initial begin
        @ (posedge Cke) begin
            @ (posedge DLL_enable) begin
                aref_count = 0;
                @ (posedge DLL_reset) begin
                    @ (Prech_count) begin
                        if (aref_count >= 2) begin
                            if (DEBUG) $display ("%m: at time %t MEMORY:  Power Up and Initialization Sequence is complete", $time);
                            power_up_done = 1;
                        end else begin
                            aref_count = 0;
                            @ (aref_count >= 2) begin
                                if (DEBUG) $display ("%m: at time %t MEMORY:  Power Up and Initialization Sequence is complete", $time);
                                power_up_done = 1;
                            end
                        end
                    end
                end
            end
        end
    end

    // Write Memory
    task write_mem;
        input [full_mem_bits - 1 : 0] addr;
        input       [DQ_BITS - 1 : 0] data;
        reg       [part_mem_bits : 0] i;
        begin
`ifdef FULL_MEM
            mem_array[addr] = data;
`else
            begin : loop
                for (i = 0; i < mem_used; i = i + 1) begin
                    if (addr_array[i] === addr) begin
                        disable loop;
                    end
                end
            end
            if (i === mem_used) begin
                if (i === (1<<part_mem_bits)) begin
                    $display ("At time %t ERROR: Memory overflow.\n  Write to Address %h with Data %h will be lost.\n  You must increase the part_mem_bits parameter or `define FULL_MEM.", $time, addr, data);
                end else begin
                    mem_used = mem_used + 1;
                    addr_array[i] = addr;
                end
            end
            mem_array[i] = data;
`endif
        end
    endtask

    // Read Memory
    task read_mem;
        input [full_mem_bits - 1 : 0] addr;
        output      [DQ_BITS - 1 : 0] data;
        reg       [part_mem_bits : 0] i;
        begin
`ifdef FULL_MEM
            data = mem_array[addr];
`else
            begin : loop
                for (i = 0; i < mem_used; i = i + 1) begin
                    if (addr_array[i] === addr) begin
                        disable loop;
                    end
                end
            end
            if (i <= mem_used) begin
                data = mem_array[i];
            end
`endif
        end
    endtask

    // Burst Decode
    task Burst_Decode;
    begin

        // Advance Burst Counter
        if (Burst_counter < burst_length) begin
            Burst_counter = Burst_counter + 1;
        end

        // Burst Type
        if (Mode_reg[3] === 1'b0) begin                         // Sequential Burst
            Cols_temp = Cols_addr + 1;
        end else if (Mode_reg[3] === 1'b1) begin                // Interleaved Burst
            Cols_temp[2] =  Burst_counter[2] ^ Cols_brst[2];
            Cols_temp[1] =  Burst_counter[1] ^ Cols_brst[1];
            Cols_temp[0] =  Burst_counter[0] ^ Cols_brst[0];
        end

        // Burst Length
        if (burst_length === 2) begin
            Cols_addr [0] = Cols_temp [0];
        end else if (burst_length === 4) begin
            Cols_addr [1 : 0] = Cols_temp [1 : 0];
        end else if (burst_length === 8) begin
            Cols_addr [2 : 0] = Cols_temp [2 : 0];
        end else begin
            Cols_addr = Cols_temp;
        end

        // Data Counter
        if (Burst_counter >= burst_length) begin
            Data_in_enable = 1'b0;
            Data_out_enable = 1'b0;
            read_precharge_truncation = 4'h0;        end
        
    end
    endtask

    // Manual Precharge Pipeline
    task Manual_Precharge_Pipeline;
    begin
        // A10 Precharge Pipeline
        A10_precharge[0] = A10_precharge[1];
        A10_precharge[1] = A10_precharge[2];
        A10_precharge[2] = A10_precharge[3];
        A10_precharge[3] = A10_precharge[4];
        A10_precharge[4] = A10_precharge[5];
        A10_precharge[5] = A10_precharge[6];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -