📄 example1.m
字号:
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%
% Data fitting DEMO of neural networks with matrix inputs.
%
% Author: Povilas Daniu餴s, paralax@hacker.lt
% http://ai.hacker.lt - lithuanian site about Artificial Intelligence.
%
% TODO: weighted MSE minimization, maximal likelihood method, multiple
% activation function support.
% ----------------------------------------------------------------------
clear all
alpha = 0.9; % inertia
eta = 0.005; % inital learning rate
epsilon = 0.03; % needed MSE
epsilon1 = 0.001; % minimal descent (stopping criteria) - all iterations in this case
neurones = 20; % su 20 neveikia :)
n = 10;
numEpochs = 30;
earlyStop = 5;
for i=1:100
x = rand(1,49 );
data.training(i).mat = reshape(x,7,7);
% data.target(i) = sin(x(1) + exp(x(2))) + 2*cos(x(3) + x(4)) + (1 + x(5)^2 + x(6)^2)/(1 + x(5)^2 + x(6)^2);
data.target(i) = sin(trace(data.training(i).mat));
% data.target(i) = sin(mean(x));
end
%data.vtraining = data.vtraining';
e = mNN_device(neurones,size(data.training(1).mat),alpha,eta,epsilon,epsilon1,earlyStop);
e_elm = ELM_train(e,data);
%e_elm = gdtrain(e,data,10);
s_elm = mNN_sim(e_elm,data);
plot(data.target,'r-'); hold on;
plot(s_elm,'b-');
sum((data.target - s_elm).^2) / length(data.target)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -