📄 elm_rtrain.m
字号:
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%
% ELM_Rtrain(network,data) - train with Resursive Least Squares
%
% Parameters: network - neural network with matrix networks
% data - training data sample
%
% Author: Povilas Daniu餴s, paralax@hacker.lt
% http://ai.hacker.lt - lithuanian site about Artificial Intelligence.
%
% ----------------------------------------------------------------------
function f=ELM_Rtrain(network,data)
Y = data.target';
% Online mode
% Stage 1: boosting
for i=1:network.regressors
X(i,1) = 1;
for j=2:network.regressors
X(i,j) = tansig( network.left(j).w * data.training(i).mat * network.right(j).w + network.bias(j) );
end
end
M = inv(X'*X);
T = Y(1:network.regressors,:);
network.weights = M*X'*T;
% Stage 2
for i=network.regressors+1:length(Y)
clear h
h(1) = 1;
for j=2:network.regressors
h(j) = tansig( network.left(j).w * data.training(i).mat * network.right(j).w + network.bias(j) );
end
h = h';
M = M - (M*h*h'*M)/(1 + h'*M*h);
network.weights = network.weights + M*h*(Y(i,:) - h'*network.weights);
end
f = network;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -