⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 trianglecube.c

📁 图形处理算法合集3:包括图形处理、帧缓存技术、渲染、矩阵运算、建模方法
💻 C
字号:
#include <math.h>/* this version of SIGN3 shows some numerical instability, and is improved * by using the uncommented macro that follows, and a different test with it */#ifdef OLD_TEST	#define SIGN3( A ) (((A).x<0)?4:0 | ((A).y<0)?2:0 | ((A).z<0)?1:0)#else	#define EPS 10e-5	#define SIGN3( A ) \	  (((A).x < EPS) ? 4 : 0 | ((A).x > -EPS) ? 32 : 0 | \	   ((A).y < EPS) ? 2 : 0 | ((A).y > -EPS) ? 16 : 0 | \	   ((A).z < EPS) ? 1 : 0 | ((A).z > -EPS) ? 8 : 0)#endif#define CROSS( A, B, C ) { \  (C).x =  (A).y * (B).z - (A).z * (B).y; \  (C).y = -(A).x * (B).z + (A).z * (B).x; \  (C).z =  (A).x * (B).y - (A).y * (B).x; \   }#define SUB( A, B, C ) { \  (C).x =  (A).x - (B).x; \  (C).y =  (A).y - (B).y; \  (C).z =  (A).z - (B).z; \   }#define LERP( A, B, C) ((B)+(A)*((C)-(B)))#define MIN3(a,b,c) ((((a)<(b))&&((a)<(c))) ? (a) : (((b)<(c)) ? (b) : (c)))#define MAX3(a,b,c) ((((a)>(b))&&((a)>(c))) ? (a) : (((b)>(c)) ? (b) : (c)))#define INSIDE 0#define OUTSIDE 1typedef struct {      float           x;      float           y;      float           z;      } Point3;typedef struct{   Point3 v1;                 /* Vertex1 */   Point3 v2;                 /* Vertex2 */   Point3 v3;                 /* Vertex3 */   } Triangle3;    /*___________________________________________________________________________*//* Which of the six face-plane(s) is point P outside of? */long face_plane(Point3 p){long outcode;   outcode = 0;   if (p.x >  .5) outcode |= 0x01;   if (p.x < -.5) outcode |= 0x02;   if (p.y >  .5) outcode |= 0x04;   if (p.y < -.5) outcode |= 0x08;   if (p.z >  .5) outcode |= 0x10;   if (p.z < -.5) outcode |= 0x20;   return(outcode);}/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *//* Which of the twelve edge plane(s) is point P outside of? */long bevel_2d(Point3 p){long outcode;   outcode = 0;   if ( p.x + p.y > 1.0) outcode |= 0x001;   if ( p.x - p.y > 1.0) outcode |= 0x002;   if (-p.x + p.y > 1.0) outcode |= 0x004;   if (-p.x - p.y > 1.0) outcode |= 0x008;   if ( p.x + p.z > 1.0) outcode |= 0x010;   if ( p.x - p.z > 1.0) outcode |= 0x020;   if (-p.x + p.z > 1.0) outcode |= 0x040;   if (-p.x - p.z > 1.0) outcode |= 0x080;   if ( p.y + p.z > 1.0) outcode |= 0x100;   if ( p.y - p.z > 1.0) outcode |= 0x200;   if (-p.y + p.z > 1.0) outcode |= 0x400;   if (-p.y - p.z > 1.0) outcode |= 0x800;   return(outcode);}/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *//* Which of the eight corner plane(s) is point P outside of? */long bevel_3d(Point3 p){long outcode;   outcode = 0;   if (( p.x + p.y + p.z) > 1.5) outcode |= 0x01;   if (( p.x + p.y - p.z) > 1.5) outcode |= 0x02;   if (( p.x - p.y + p.z) > 1.5) outcode |= 0x04;   if (( p.x - p.y - p.z) > 1.5) outcode |= 0x08;   if ((-p.x + p.y + p.z) > 1.5) outcode |= 0x10;   if ((-p.x + p.y - p.z) > 1.5) outcode |= 0x20;   if ((-p.x - p.y + p.z) > 1.5) outcode |= 0x40;   if ((-p.x - p.y - p.z) > 1.5) outcode |= 0x80;   return(outcode);}/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *//* Test the point "alpha" of the way from P1 to P2 *//* See if it is on a face of the cube              *//* Consider only faces in "mask"                   */long check_point(Point3 p1, Point3 p2, float alpha, long mask){Point3 plane_point;   plane_point.x = LERP(alpha, p1.x, p2.x);   plane_point.y = LERP(alpha, p1.y, p2.y);   plane_point.z = LERP(alpha, p1.z, p2.z);   return(face_plane(plane_point) & mask);}/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *//* Compute intersection of P1 --> P2 line segment with face planes *//* Then test intersection point to see if it is on cube face       *//* Consider only face planes in "outcode_diff"                     *//* Note: Zero bits in "outcode_diff" means face line is outside of */long check_line(Point3 p1, Point3 p2, long outcode_diff){   if ((0x01 & outcode_diff) != 0)      if (check_point(p1,p2,( .5-p1.x)/(p2.x-p1.x),0x3e) == INSIDE) return(INSIDE);   if ((0x02 & outcode_diff) != 0)      if (check_point(p1,p2,(-.5-p1.x)/(p2.x-p1.x),0x3d) == INSIDE) return(INSIDE);   if ((0x04 & outcode_diff) != 0)       if (check_point(p1,p2,( .5-p1.y)/(p2.y-p1.y),0x3b) == INSIDE) return(INSIDE);   if ((0x08 & outcode_diff) != 0)       if (check_point(p1,p2,(-.5-p1.y)/(p2.y-p1.y),0x37) == INSIDE) return(INSIDE);   if ((0x10 & outcode_diff) != 0)       if (check_point(p1,p2,( .5-p1.z)/(p2.z-p1.z),0x2f) == INSIDE) return(INSIDE);   if ((0x20 & outcode_diff) != 0)       if (check_point(p1,p2,(-.5-p1.z)/(p2.z-p1.z),0x1f) == INSIDE) return(INSIDE);   return(OUTSIDE);}/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *//* Test if 3D point is inside 3D triangle */long point_triangle_intersection(Point3 p, Triangle3 t){long sign12,sign23,sign31;Point3 vect12,vect23,vect31,vect1h,vect2h,vect3h;Point3 cross12_1p,cross23_2p,cross31_3p;/* First, a quick bounding-box test:                               *//* If P is outside triangle bbox, there cannot be an intersection. */   if (p.x > MAX3(t.v1.x, t.v2.x, t.v3.x)) return(OUTSIDE);     if (p.y > MAX3(t.v1.y, t.v2.y, t.v3.y)) return(OUTSIDE);   if (p.z > MAX3(t.v1.z, t.v2.z, t.v3.z)) return(OUTSIDE);   if (p.x < MIN3(t.v1.x, t.v2.x, t.v3.x)) return(OUTSIDE);   if (p.y < MIN3(t.v1.y, t.v2.y, t.v3.y)) return(OUTSIDE);   if (p.z < MIN3(t.v1.z, t.v2.z, t.v3.z)) return(OUTSIDE);/* For each triangle side, make a vector out of it by subtracting vertexes; *//* make another vector from one vertex to point P.                          *//* The crossproduct of these two vectors is orthogonal to both and the      *//* signs of its X,Y,Z components indicate whether P was to the inside or    *//* to the outside of this triangle side.                                    */   SUB(t.v1, t.v2, vect12)   SUB(t.v1,    p, vect1h);   CROSS(vect12, vect1h, cross12_1p)   sign12 = SIGN3(cross12_1p);      /* Extract X,Y,Z signs as 0..7 or 0...63 integer */   SUB(t.v2, t.v3, vect23)   SUB(t.v2,    p, vect2h);   CROSS(vect23, vect2h, cross23_2p)   sign23 = SIGN3(cross23_2p);   SUB(t.v3, t.v1, vect31)   SUB(t.v3,    p, vect3h);   CROSS(vect31, vect3h, cross31_3p)   sign31 = SIGN3(cross31_3p);/* If all three crossproduct vectors agree in their component signs,  *//* then the point must be inside all three.                           *//* P cannot be OUTSIDE all three sides simultaneously.                */   /* this is the old test; with the revised SIGN3() macro, the test    * needs to be revised. */#ifdef OLD_TEST   if ((sign12 == sign23) && (sign23 == sign31))      return(INSIDE);   else      return(OUTSIDE);#else   return ((sign12 & sign23 & sign31) == 0) ? OUTSIDE : INSIDE;#endif}/*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *//**********************************************//* This is the main algorithm procedure.      *//* Triangle t is compared with a unit cube,   *//* centered on the origin.                    *//* It returns INSIDE (0) or OUTSIDE(1) if t   *//* intersects or does not intersect the cube. *//**********************************************/long t_c_intersection(Triangle3 t){long v1_test,v2_test,v3_test;float d;Point3 vect12,vect13,norm;Point3 hitpp,hitpn,hitnp,hitnn;/* First compare all three vertexes with all six face-planes *//* If any vertex is inside the cube, return immediately!     */   if ((v1_test = face_plane(t.v1)) == INSIDE) return(INSIDE);   if ((v2_test = face_plane(t.v2)) == INSIDE) return(INSIDE);   if ((v3_test = face_plane(t.v3)) == INSIDE) return(INSIDE);/* If all three vertexes were outside of one or more face-planes, *//* return immediately with a trivial rejection!                   */   if ((v1_test & v2_test & v3_test) != 0) return(OUTSIDE);/* Now do the same trivial rejection test for the 12 edge planes */   v1_test |= bevel_2d(t.v1) << 8;    v2_test |= bevel_2d(t.v2) << 8;    v3_test |= bevel_2d(t.v3) << 8;   if ((v1_test & v2_test & v3_test) != 0) return(OUTSIDE);  /* Now do the same trivial rejection test for the 8 corner planes */   v1_test |= bevel_3d(t.v1) << 24;    v2_test |= bevel_3d(t.v2) << 24;    v3_test |= bevel_3d(t.v3) << 24;    if ((v1_test & v2_test & v3_test) != 0) return(OUTSIDE);   /* If vertex 1 and 2, as a pair, cannot be trivially rejected *//* by the above tests, then see if the v1-->v2 triangle edge  *//* intersects the cube.  Do the same for v1-->v3 and v2-->v3. *//* Pass to the intersection algorithm the "OR" of the outcode *//* bits, so that only those cube faces which are spanned by   *//* each triangle edge need be tested.                         */   if ((v1_test & v2_test) == 0)      if (check_line(t.v1,t.v2,v1_test|v2_test) == INSIDE) return(INSIDE);   if ((v1_test & v3_test) == 0)      if (check_line(t.v1,t.v3,v1_test|v3_test) == INSIDE) return(INSIDE);   if ((v2_test & v3_test) == 0)      if (check_line(t.v2,t.v3,v2_test|v3_test) == INSIDE) return(INSIDE);/* By now, we know that the triangle is not off to any side,     *//* and that its sides do not penetrate the cube.  We must now    *//* test for the cube intersecting the interior of the triangle.  *//* We do this by looking for intersections between the cube      *//* diagonals and the triangle...first finding the intersection   *//* of the four diagonals with the plane of the triangle, and     *//* then if that intersection is inside the cube, pursuing        *//* whether the intersection point is inside the triangle itself. *//* To find plane of the triangle, first perform crossproduct on  *//* two triangle side vectors to compute the normal vector.       */                                     SUB(t.v1,t.v2,vect12);   SUB(t.v1,t.v3,vect13);   CROSS(vect12,vect13,norm)/* The normal vector "norm" X,Y,Z components are the coefficients *//* of the triangles AX + BY + CZ + D = 0 plane equation.  If we   *//* solve the plane equation for X=Y=Z (a diagonal), we get        *//* -D/(A+B+C) as a metric of the distance from cube center to the *//* diagonal/plane intersection.  If this is between -0.5 and 0.5, *//* the intersection is inside the cube.  If so, we continue by    *//* doing a point/triangle intersection.                           *//* Do this for all four diagonals.                                */   d = norm.x * t.v1.x + norm.y * t.v1.y + norm.z * t.v1.z;   /* if one of the diagonals is parallel to the plane, the other will intersect the plane */   if(fabs(denom=(norm.x + norm.y + norm.z))>EPS)   /* skip parallel diagonals to the plane; division by 0 can occur */   {      hitpp.x = hitpp.y = hitpp.z = d / denom;      if (fabs(hitpp.x) <= 0.5)         if (point_triangle_intersection(hitpp,t) == INSIDE) return(INSIDE);   }   if(fabs(denom=(norm.x + norm.y - norm.z))>EPS)   {      hitpn.z = -(hitpn.x = hitpn.y = d / denom);      if (fabs(hitpn.x) <= 0.5)         if (point_triangle_intersection(hitpn,t) == INSIDE) return(INSIDE);   }          if(fabs(denom=(norm.x - norm.y + norm.z))>EPS)   {             hitnp.y = -(hitnp.x = hitnp.z = d / denom);      if (fabs(hitnp.x) <= 0.5)         if (point_triangle_intersection(hitnp,t) == INSIDE) return(INSIDE);   }   if(fabs(denom=(norm.x - norm.y - norm.z))>EPS)   {      hitnn.y = hitnn.z = -(hitnn.x = d / denom);      if (fabs(hitnn.x) <= 0.5)         if (point_triangle_intersection(hitnn,t) == INSIDE) return(INSIDE);   }   /* No edge touched the cube; no cube diagonal touched the triangle. *//* We're done...there was no intersection.                          */   return(OUTSIDE);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -