📄 lineardiscriminant.cpp
字号:
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>
using namespace std;
#define TOTAL_NUMBER 50//样本总数
#define TRAINING_NUMBER 30//用于训练的样本数量
#define TESTING_NUMBER 20//用于测试的样本数量
#define BITMAP_SIZE 64//位图大小
#define FEATURE_NUMBER//提取的特征数量
#define START_VALUE//w各分量的初值
#define STEP_LENGTH 5//步长
char map[BITMAP_SIZE][BITMAP_SIZE];//位图
float feature[FEATURE_NUMBER+2];//特征第1位为对应的数字,第二位到倒数第二位为所有的特征,最后一位为扩展位(等于1)
int w0[FEATURE_NUMBER+1],w1[FEATURE_NUMBER+1],w4[FEATURE_NUMBER+1],w5[FEATURE_NUMBER+1],w6[FEATURE_NUMBER+1],w7[FEATURE_NUMBER+1],w8[FEATURE_NUMBER+1],w9[FEATURE_NUMBER+1];//判别函数(8类共8个)
void FeatureExtraction(int i)//处理数组map,提取特征,存入feature
{
}
void training()
{
int i,j,f,g,h;
int sum,get_figure;
while(f<8*TRAINING_NUMBER){
f=0;
for(i=1;i<=8*TRAINING_NUMBER;i++){
//从training_feature.txt中读取一个样本,存于数组feature中
sum=0;
get_figure=0;
h=0;
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w0[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=0;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w1[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=1;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w4[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=4;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w5[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=5;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w6[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=6;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w7[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=7;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w8[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=8;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w9[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=9;
}
if(get_figure!=feature[0]){
switch(get_figure)
{
case 0:
{
for(j=0;j<=FEATURE_NUMBER;j++)
w0[j]=w0[j]+feature[j+1]*STEP_LENGTH;
}
case 1:
{
for(j=0;j<=FEATURE_NUMBER;j++)
w1[j]=w1[j]+feature[j+1]*STEP_LENGTH;
}
case 4:
{
for(j=0;j<=FEATURE_NUMBER;j++)
w4[j]=w4[j]+feature[j+1]*STEP_LENGTH;
}
case 5:
{
for(j=0;j<=FEATURE_NUMBER;j++)
w5[j]=w5[j]+feature[j+1]*STEP_LENGTH;
}
case 6:
{
for(j=0;j<=FEATURE_NUMBER;j++)
w6[j]=w6[j]+feature[j+1]*STEP_LENGTH;
}
case 7:
{
for(j=0;j<=FEATURE_NUMBER;j++)
w7[j]=w7[j]+feature[j+1]*STEP_LENGTH;
}
case 8:
{
for(j=0;j<=FEATURE_NUMBER;j++)
w8[j]=w8[j]+feature[j+1]*STEP_LENGTH;
}
case 9:
{
for(j=0;j<=FEATURE_NUMBER;j++)
w9[j]=w9[j]+feature[j+1]*STEP_LENGTH;
}
default:break;
}
}
else
f++;
}
}
return;
}
void testing()
{
int i,j,g,h;
int sum,get_figure;
for(i=1;i<=8*TRAINING_NUMBER;i++){
//从testing_feature.txt中读取一个样本,存于数组feature中
sum=0;
get_figure=0;
h=0;
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w0[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=0;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w1[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=1;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w4[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=4;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w5[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=5;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w6[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=6;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w7[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=7;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w8[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=8;
}
for(j=1;j<=FEATURE_NUMBER+1;j++){
g=feature[j]*w9[j-1];
h=h+g;
}
if(h>sum){
sum=h;
get_figure=9;
}
cout<<feature[0]<<" "<<get_figure<<"\n";//真实值与识别值的对比
}
}
int main()
{
int i,j;
//----------------------特征提取---------------------
//1,选取特征
//2,输入8个文件(8个数字,每个数字一个文件,每个文件中包含50个样本)
// 输出两个文件(一个文件存训练样本提取出的8*30个特征向量,另一个文件存测试样本提取出的8*20个特征向量)
ifstream inf;
ofstream training_outf,testing_outf;
training_outf.open("training_feature.txt");
testing_outf.open("testing_feature.txt");
for(i=0;i<=9;i++){
switch(i)
{
case 0:inf.open("digit0.dat");
case 1:inf.open("digit1.dat");
case 4:inf.open("digit4.dat");
case 5:inf.open("digit5.dat");
case 6:inf.open("digit6.dat");
case 7:inf.open("digit7.dat");
case 8:inf.open("digit8.dat");
case 9:inf.open("digit9.dat");
default:break;
}
char c;
inf>>noskipws;//不忽略空白,把每行最后那个'\n'也读进来
int sample_number=0;//已提取特征的样本数,前30个用于训练,存入文件(training_feature.txt),后20个用于测试,存入文件(testing_feature.txt)
int j;
float d;
while(inf>>c){
int s=0,t=0;
int stopline=0;
while((inf>>c)&&(stopline!=BITMAP_SIZE)){
if(c!='\n'){
map[s][t]=c;
t++;
}
else{
s++;
t=0;
stopline++;
}
}
sample_number++;
//处理数组map,包括提取特征,存入feature,再将feature存入文件(training_feature.txt)或(testing_feature.txt)
FeatureExtraction(i);//i代表数字'i'
if(sample_number<=30){
for(j=0;j<=FEATURE_NUMBER+1;j++){
d=feature[j];
training_outf<<d;
if(j<FEATURE_NUMBER+1)
training_outf<<" ";
else
training_outf<<"\n";
}
}
else{
for(j=0;j<=FEATURE_NUMBER+1;j++){
d=feature[j];
testing_outf<<d;
if(j<FEATURE_NUMBER+1)
testning_outf<<" ";
else
testing_outf<<"\n";
}
}
inf.close();
}
training_outf.close();
testing_outf.close();
//----------------------训练-------------------------
//1,设定一个步长STEP_LENGTH
//2,为每一个判别函数(8类共8个)的系数向量w设初值,维数=特征个数+1(对应判别函数中的常数)
/*3,用训练样本训练判别函数,每一步都是把一个样本作为8个函数的输入,分别计算输出,
得出分类结果(输出值最大的那个类),如果分类结果正确,则无需修改函数的系数w向量,
如果分类结果错误,则修改应分得的类的判别函数的系数w,w是一个向量,对于每一个
分量,都增加一个因子:(训练样本的相应分量*步长STEP_LENGTH)
*/
//4,循环,每次循环都要使用全部的训练样本(8*30个),直到在一次循环中10个判别函数的系数都不改变
for(i=0;i<=FEATURE_NUMBER){
w0[i]=START_VALUE;
}
for(i=0;i<=FEATURE_NUMBER){
w1[i]=START_VALUE;
}
for(i=0;i<=FEATURE_NUMBER){
w4[i]=START_VALUE;
}
for(i=0;i<=FEATURE_NUMBER){
w5[i]=START_VALUE;
}
for(i=0;i<=FEATURE_NUMBER){
w6[i]=START_VALUE;
}
for(i=0;i<=FEATURE_NUMBER){
w7[i]=START_VALUE;
}
for(i=0;i<=FEATURE_NUMBER){
w8[i]=START_VALUE;
}
for(i=0;i<=FEATURE_NUMBER){
w9[i]=START_VALUE;
}
training();
//----------------------测试-------------------------
//1,选一个测试样本作为8个函数的输入,分别计算输出,得出分类结果(输出值最大的那个类)
//2,循环,对每个测试样本计算分类结果
testing();
system("PAUSE");
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -