📄 pbgband1.m
字号:
function Bandwidth=PBGBand1(ea,eb,f,PCType,Keach,TEorTM,NEIG)
%function PBGBand(ea,eb,R,PCType,Keach,TEorTM)
%--------------------------------------------------------------
%| This is a program to calculate the Photonic Bands of two |
%| dimension Photonic Crystal with circular inclusions. |
%| It calculates both TE and TM modes (E and H polarization) |
%--------------------------------------------------------------
%Parameters:
%ea: The dielectric constant of the circular inclusions.
%eb: The dielectric constant of background.
%R: The radius of dielectric columns
%PCType =1: Square lattice
% =2: Triangular lattice
% =3: Honeycomb
%Keach: The number of k vectors in each wave vector branch.
%TEorTM: =0: TE modes
% =1: TM modes
%--------------------------------------------------------------
%disp('--------------------------------------------------')
%if (TEorTM==0)
% disp('Plane wave expansion method for PC bands: TE modes');
%else
% disp('Plane wave expansion method for PC bands: TM modes');
%end
%disp('--------------------------------------------------')
%if (PCType==1)
%disp('Square lattice');
%end
%if (PCType==2)
% disp('Triangular lattice');
%end%
%if (PCType==3)
% disp('Honeycomb lattice');
%end
ea=1;
PCType=1;
Keach=20;
TEorTM=0;
NEIG=10;
eb=6;
R=0.2;
%Control parameters
Ktype=3; % The number of band parts, such as X->M, T->X, ...
NumberK=Ktype*Keach; %The total number of K vector;
%Initial parameters
a=1; %Lattice constance.
if PCType==1
a1=a*[1,0];
a2=a*[0,1];
end
if PCType==2
a1=a*[1,0];
a2=a*[0.5,sqrt(3)/2];
end
if PCType==3
a1=a*[sqrt(3),0];
a2=a*[sqrt(3)/2,1.5];
end
%a1,a2 are the basic vectors of lacctice cell.
ac=abs(a1(1)*a2(2)-a1(2)*a2(1));
if PCType==1|PCType==2
f=pi*R*R/ac;
% R=sqrt(f*ac/pi);
else
f=2*pi*R*R/ac;
% R=sqrt(f*ac/(2*pi));
end
%ac: Area of lattice cell.
b1=2*pi/ac*[a2(2),-a2(1)];
b2=2*pi/ac*[-a1(2),a1(1)];
%b1, b2 are vectors in reciprocal space.
%f=pi*R*R/ac;
%f: The filling fraction, i.e. the fraction of
% the total volume occupied by the rods.
MaxDimForG=9; % The max Potive Number of the reciprocal lattice, G
DimForG=2*MaxDimForG+1;
NPW=DimForG*DimForG; %NPW: The number of Plane Waves
%disp('--------------------------------------------------')
%disp('Dielectric constant FT--- BEGIN')
gtemp=-MaxDimForG:MaxDimForG;
gtemp1=repmat(gtemp,DimForG,1);
Gx=b1(1)*gtemp1+b2(1)*gtemp1';
Gy=b1(2)*gtemp1+b2(2)*gtemp1';
Gx=Gx(:)';
Gy=Gy(:)';
%disp(strcat('The number of plane waves is--',num2str(NPW)));
Gx_m=repmat(Gx,NPW,1);
Gx_n=Gx_m';
Gy_m=repmat(Gy,NPW,1);
Gy_n=Gy_m';
%calculate the Matrix coefficience.
ek0=f/ea+(1-f)/eb;
ekc=(1/ea-1/eb)*f*2;
%Calculate the ek matrix, the coefficence of Fourier transform of ek.
GR_mat=sqrt((Gx_m-Gx_n).*(Gx_m-Gx_n)+(Gy_m-Gy_n).*(Gy_m-Gy_n))*R;
if PCType==1|PCType==2
%eliminate the division on zero in the calculatation of ek
na=find(GR_mat==0);
GR_mat(na)=1;
ek_mat=ekc*besselj(1,GR_mat)./GR_mat;
ek_mat(na)=ek0;
end
if PCType==3
%eliminate the division on zero in the calculatation of ek
na=find(GR_mat==0);
GR_mat(na)=1;
ek_mat=cos((Gx_m-Gx_n).*a/2+(Gy_m-Gy_n).*a*sqrt(3)/6).*ekc.*besselj(1,GR_mat)./GR_mat;
ek_mat(na)=ek0;
end
%toc
%tic
%Calculated points:
Point=zeros(Ktype+1,2);
if PCType==1 %Square lattice
Point(1,:)=[(b1(1)+b2(1))/2,(b1(2)+b2(2))/2]; %M point
Point(2,:)=[0,0]; %Gama Point
Point(3,:)=[b1(1)/2,0]; %X Point
Point(4,:)=[(b1(1)+b2(1))/2,(b1(2)+b2(2))/2]; %M point
end
if PCType==2|PCType==3 %Triangular lattice and Honeycomb lattice
Point(1,:)=[0,b2(2)/2]; % M point
Point(2,:)=[0,0]; %Gama Point
Point(3,:)=[b2(2)*sqrt(3)/6,b2(2)/2]; %K Point
Point(4,:)=[0,b2(2)/2]; % M point
%Point(1,:)=[0,0]; %Gama Point
%Point(2,:)=[0,b2(2)/2]; % M point
%Point(3,:)=[b2(2)*sqrt(3)/6,b2(2)/2]; %K Point
%Point(4,:)=[0,0]; %Gama Point
end
%These three are for the K vectors, for the different case.
K1=[];
K2=[];
for ktnum=1:Ktype
K1temp=linspace(Point(ktnum,1),Point(ktnum+1,1),Keach+1);
K2temp=linspace(Point(ktnum,2),Point(ktnum+1,2),Keach+1);
K1=[K1,K1temp(1:Keach)];
K2=[K2,K2temp(1:Keach)];
end
%disp('Dielectric constant FT--- END')
%disp('--------------------------------------------------')
%disp('Eigen value calculations--- BEGIN')
eigval=[]; %Initial the eigvalue matrix.
for knum=1:NumberK
%disp(strcat('---K vector No.',num2str(knum),'---',num2str(NumberK)))
kx=K1(knum);
ky=K2(knum);
%tic
%Now begin to calculate the matrix H:
if (TEorTM==0)
%TE part
KGmn_mat=(kx+Gx_m).*(kx+Gx_n)+(ky+Gy_m).*(ky+Gy_n);
%KGmn_mat=(kx-Gx_m).*(kx-Gx_n)+(ky-Gy_m).*(ky-Gy_n);
H=KGmn_mat.*ek_mat;
else
KGmn_mat=(kx+Gx_m).^2+(ky+Gy_m).^2;
%KGmn_mat=(kx-Gx_m).^2+(ky-Gy_m).^2;
H=KGmn_mat.*ek_mat;
%TM part
%Place your codes below for Task 1.
end
%Find the eigenvalues
eigvalue=sort(eig(H));
eigval=[eigval,eigvalue(1:NEIG)] ;
end
eigval=[eigval,eigval(:,1)];
eigval=sqrt(eigval)*a*0.5/pi;
eigval=real(eigval); %Complete All the things
wdiff=[];
for k=1:NEIG-1
wmax=max(eigval(k,: ),[],2);
wmin=min(eigval(k+1,:),[],2);
if (wmin-wmax)>0
wdiff=[wmax;wmin];
break
end
end
if size(wdiff,2)>0
Bandwidth=wdiff(2)-wdiff(1);
else
Bandwidth=[];
return
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -