⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dct.vhd

📁 用于视频图像编码的8×8DCT变换
💻 VHD
📖 第 1 页 / 共 3 页
字号:
-- write functionP_ram1: process (RST,CLK)beginif (RST = '1') thenram1_mem(0 to 63) <= (others => "00000000000"); elsif (rising_edge (CLK)) then	if (en_ram1reg = '1' and wr_cntr(6) <= '0' ) then	  ram1_mem(CONV_INTEGER (wr_cntr(5 downto 0))) <= z_out;    end if; end if;end process P_ram1;P_ram2: process (RST,CLK)beginif (RST = '1') thenram2_mem(0 to 63) <= (others => "00000000000"); elsif (rising_edge (CLK)) then	if (en_ram1reg = '1' and wr_cntr(6) > '1') then	  ram2_mem(CONV_INTEGER (wr_cntr(5 downto 0))) <= z_out;    end if; end if;end process P_ram2;   PROCESS (CLK)   BEGIN      IF (CLK'EVENT AND CLK = '1') THEN         IF (en_ram1reg = '1' AND rd_cntr(6) = '0') THEN            data_out <= ram2_mem(CONV_INTEGER (rd_cntr(5 downto 0)));             ELSE            IF (en_ram1reg = '1' AND rd_cntr(6) = '1') THEN               data_out <= ram1_mem(CONV_INTEGER (rd_cntr(5 downto 0)));                ELSE               data_out <= "00000000000";                END IF;         END IF;      END IF;   END PROCESS;   -- END MEMORY SECTION    -- 2D-DCT implementation same as the 1D-DCT implementation    -- First dct coeeficient appears at the output of the RAM1 after   --  First dct coeeficient appears at the output of the RAM1 after   -- 15 + 64 clk cycles. So the 2nd DCT operation starts after 79 clk cycles.       PROCESS (CLK, RST)   BEGIN      IF (RST = '1') THEN         cntr79 <= "0000000";          ELSIF (CLK'EVENT AND CLK = '1') THEN         cntr79 <= cntr79 + "0000001";          END IF;   END PROCESS;   en_dct2d <= '0' WHEN RST = '1' ELSE '1' WHEN (cntr79 = "1001111") ELSE en_dct2d;   PROCESS (CLK, RST)   BEGIN      IF (RST = '1') THEN         en_dct2d_reg <= '0';          ELSIF (CLK'EVENT AND CLK = '1') THEN         en_dct2d_reg <= en_dct2d;          END IF;   END PROCESS;   data_out_final(10 downto 0) <= data_out ;   PROCESS (CLK, RST)   BEGIN      IF (RST = '1') THEN         xb0_in <= "00000000000";    xb1_in <= "00000000000";             xb2_in <= "00000000000";    xb3_in <= "00000000000";             xb4_in <= "00000000000";    xb5_in <= "00000000000";             xb6_in <= "00000000000";    xb7_in <= "00000000000";          ELSIF (CLK'EVENT AND CLK = '1') THEN         IF (en_dct2d_reg = '1') THEN            xb0_in <= data_out_final;    xb1_in <= xb0_in;                xb2_in <= xb1_in;    xb3_in <= xb2_in;                xb4_in <= xb3_in;    xb5_in <= xb4_in;                xb6_in <= xb5_in;    xb7_in <= xb6_in;             ELSE            IF (en_dct2d_reg = '0') THEN               xb0_in <= "00000000000";    xb1_in <= "00000000000";                   xb2_in <= "00000000000";    xb3_in <= "00000000000";                   xb4_in <= "00000000000";    xb5_in <= "00000000000";                   xb6_in <= "00000000000";    xb7_in <= "00000000000";                END IF;         END IF;      END IF;   END PROCESS;   -- register inputs, inputs read in every eighth clk   PROCESS (CLK, RST)   BEGIN      IF (RST = '1') THEN         xb0_reg <= "000000000000";    xb1_reg <= "000000000000";             xb2_reg <= "000000000000";    xb3_reg <= "000000000000";             xb4_reg <= "000000000000";    xb5_reg <= "000000000000";             xb6_reg <= "000000000000";    xb7_reg <= "000000000000";          ELSIF (CLK'EVENT AND CLK = '1') THEN         IF (cntr8 = "1000") THEN            xb0_reg <= xb0_in(10) & xb0_in;                xb1_reg <= xb1_in(10) & xb1_in;                xb2_reg <= xb2_in(10) & xb2_in;                xb3_reg <= xb3_in(10) & xb3_in;                xb4_reg <= xb4_in(10) & xb4_in;                xb5_reg <= xb5_in(10) & xb5_in;                xb6_reg <= xb6_in(10) & xb6_in;                xb7_reg <= xb7_in(10) & xb7_in;             END IF;      END IF;   END PROCESS;   PROCESS (CLK, RST)   BEGIN      IF (RST = '1') THEN         toggleB <= '0';          ELSIF (CLK'EVENT AND CLK = '1') THEN         toggleB <= NOT toggleB;          END IF;   END PROCESS;   -- adder / subtractor block    PROCESS (CLK, RST)   BEGIN      IF (RST = '1') THEN         add_sub1b <= "000000000000";             add_sub2b <= "000000000000";             add_sub3b <= "000000000000";             add_sub4b <= "000000000000";          ELSIF (CLK'EVENT AND CLK = '1') THEN         IF (toggleB = '1') THEN            add_sub1b <= xb0_reg + xb7_reg;                add_sub2b <= xb1_reg + xb6_reg;                add_sub3b <= xb2_reg + xb5_reg;                add_sub4b <= xb3_reg + xb4_reg;             ELSE            IF (toggleB = '0') THEN               add_sub1b <= xb7_reg - xb0_reg;                   add_sub2b <= xb6_reg - xb1_reg;                   add_sub3b <= xb5_reg - xb2_reg;                   add_sub4b <= xb4_reg - xb3_reg;                END IF;         END IF;      END IF;   END PROCESS;P_comp1b: process (RST,CLK)begin  if (RST = '1') then       addsub1b_comp <= (others => '0'); save_sign1b <= '0';   elsif (rising_edge (CLK)) then      if(add_sub1b(11) = '0') then        addsub1b_comp <= add_sub1b(10 downto 0); save_sign1b <= '0';      else        addsub1b_comp <= (not(add_sub1b(10 downto 0))) + '1'; save_sign1b <= '1';      end if;   end if;end process P_comp1b;P_comp2b: process (RST,CLK)begin  if (RST = '1') then       addsub2b_comp <= (others => '0'); save_sign2b <= '0';   elsif (rising_edge (CLK)) then      if(add_sub2b(11) = '0') then        addsub2b_comp <= add_sub2b(10 downto 0); save_sign2b <= '0';      else        addsub2b_comp <= (not(add_sub2b(10 downto 0))) + '1'; save_sign2b <= '1';      end if;   end if;end process P_comp2b;P_comp3b: process (RST,CLK)begin  if (RST = '1') then       addsub3b_comp <= (others => '0'); save_sign3b <= '0';   elsif (rising_edge (CLK)) then      if(add_sub3b(11) = '0') then        addsub3b_comp <= add_sub3b(10 downto 0); save_sign3b <= '0';      else        addsub3b_comp <= (not(add_sub3b(10 downto 0))) + '1'; save_sign3b <= '1';      end if;   end if;end process P_comp3b;P_comp4b: process (RST,CLK)begin  if (RST = '1') then       addsub4b_comp <= (others => '0'); save_sign4b <= '0';   elsif (rising_edge (CLK)) then      if(add_sub4b(11) = '0') then        addsub4b_comp <= add_sub4b(10 downto 0); save_sign4b <= '0';      else        addsub4b_comp <= (not(add_sub4b(10 downto 0))) + '1'; save_sign4b <= '1';      end if;   end if;end process P_comp4b;   p1b_all <= (addsub1b_comp * memory1a(6 downto 0)) ;   p2b_all <= (addsub2b_comp * memory2a(6 downto 0)) ;   p3b_all <= (addsub3b_comp * memory3a(6 downto 0)) ;   p4b_all <= (addsub4b_comp * memory4a(6 downto 0)) ;   -- The following instantiation can be used while targetting Virtex2    --MULT18X18 mult1b (.A({9'b0,addsub1b_comp}), .B({11'b0,memory1a[6:0]}), .P(p1b_all));      --MULT18X18 mult2b (.A({9'b0,addsub2b_comp}), .B({11'b0,memory2a[6:0]}), .P(p2b_all));      --MULT18X18 mult3b (.A({9'b0,addsub3b_comp}), .B({11'b0,memory3a[6:0]}), .P(p3b_all));      --MULT18X18 mult4b (.A({9'b0,addsub4b_comp}), .B({11'b0,memory4a[6:0]}), .P(p4b_all));   xor1b <= (save_sign1b) xor (memory1a(7));xor2b <= (save_sign2b) xor (memory2a(7));xor3b <= (save_sign3b) xor (memory3a(7));xor4b <= (save_sign4b) xor (memory4a(7));P_prodB: process(CLK,RST)begin    if (RST = '1') then     p1b <= (others =>'0'); p2b <= (others =>'0');      p3b <= (others =>'0'); p4b <= (others =>'0');     elsif (rising_edge (CLK)) then       if(i_wait = "00") then          if (xor1b = '1') then p1b <= not("00" & p1b_all(17 downto 0)) + '1';           elsif (xor1b = '0') then p1b <= ("00" & p1b_all(17 downto 0)); end if;          if (xor2b = '1') then p2b <= not("00" & p2b_all(17 downto 0)) + '1';           elsif (xor2b = '0') then p2b <= ("00" & p2b_all(17 downto 0)); end if;          if (xor3b = '1') then p3b <= not("00" & p3b_all(17 downto 0)) + '1';           elsif (xor3b = '0') then p3b <= ("00" & p3b_all(17 downto 0)); end if;          if (xor4b = '1') then p4b <= not("00" & p4b_all(17 downto 0)) + '1';           elsif (xor4b = '0') then p4b <= ("00" & p4b_all(17 downto 0)); end if;       end if;    end if;end process P_prodB;   --always @ (posedge RST or posedge CLK)   -- always @ (posedge RST or posedge CLK)   --   begin   --     if (RST)   --       begin   --         p1b <= 16'b0; p2b <= 16'b0; p3b <= 16'b0; p4b <= 16'b0; //indexj<= 7;   --       end   --     else if (i_wait == 2'b00)   --       begin   --         p1b <= (save_sign1b ^ memory1a[7]) ? (-addsub1b_comp * memory1a[6:0]) :(addsub1b_comp * memory1a[6:0]);   --         p2b <= (save_sign2b ^ memory2a[7]) ? (-addsub2b_comp * memory2a[6:0]) :(addsub2b_comp * memory2a[6:0]);   --         p3b <= (save_sign3b ^ memory3a[7]) ? (-addsub3b_comp * memory3a[6:0]) :(addsub3b_comp * memory3a[6:0]);   --         p4b <= (save_sign4b ^ memory4a[7]) ? (-addsub4b_comp * memory4a[6:0]) :(addsub4b_comp * memory4a[6:0]);   --       end   --   end   --       -- The above if else statement used to get the add_sub signals can also be implemented using  the adsu16 library element as follows    --ADSU16 adsu16_5 (.A({8'b0,xb0_reg}), .B({8'b0,xb7_reg}), .ADD(toggleB), .CI(1'b0), .S(add_sub1b), .OFL(open), .CO(open));      --ADSU16 adsu16_6 (.A({8'b0,xb1_reg}), .B({8'b0,xb6_reg}), .ADD(toggleB), .CI(1'b0), .S(add_sub2b), .OFL(open), .CO(open));      --ADSU16 adsu16_7 (.A({8'b0,xb2_reg}), .B({8'b0,xb5_reg}), .ADD(toggleB), .CI(1'b0), .S(add_sub3b), .OFL(open), .CO(open));      --ADSU16 adsu16_8 (.A({8'b0,xb3_reg}), .B({8'b0,xb4_reg}), .ADD(toggleB), .CI(1'b0), .S(add_sub4b), .OFL(open), .CO(open));      -- multiply the outputs of the add/sub block with the 8 sets of stored coefficients    -- Final adder. Adding the ouputs of the 4 multipliers    PROCESS (CLK, RST)   BEGIN      IF (RST = '1') THEN         dct2d_int1 <= "00000000000000000000";             dct2d_int2 <= "00000000000000000000";             dct_2d_int <= "00000000000000000000";          ELSIF (CLK'EVENT AND CLK = '1') THEN         dct2d_int1 <= p1b + p2b;             dct2d_int2 <= p3b + p4b;             dct_2d_int <= dct2d_int1 + dct2d_int2;          END IF;   END PROCESS;   dct_2d_rnd <= dct_2d_int(19 downto 8) ;   dct_2d <= (dct_2d_rnd + "000000000001") WHEN dct_2d_int(7) = '1' ELSE dct_2d_rnd;   -- The first 1D-DCT output becomes valid after 14 +64 clk cycles. For the first    --  The first 1D-DCT output becomes valid after 14 +64 clk cycles. For the first    -- 2D-DCT output to be valid it takes 78 + 1clk to write into the ram + 1clk to    -- write out of the ram + 8 clks to shift in the 1D-DCT values + 1clk to register    -- the 1D-DCT values + 1clk to add/sub + 1clk to take compliment + 1 clk for    -- multiplying +  2clks to add product. So the 2D-DCT output will be valid    -- at the 94th clk. rdy_out goes high at 93rd clk so that the first data is valid   -- for the next block      PROCESS (CLK, RST)   BEGIN      IF (RST = '1') THEN         cntr92 <= "0000000";          ELSIF (CLK'EVENT AND CLK = '1') THEN         IF (cntr92 < "1011110") THEN            cntr92 <= cntr92 + "0000001";             ELSE            cntr92 <= cntr92;             END IF;      END IF;   END PROCESS;   rdy_out <= '1' WHEN (cntr92 = "1011110") ELSE '0';END logic;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -