📄 rarvm.cpp
字号:
#include "rar.hpp"#include "rarvmtbl.cpp"RarVM::RarVM(){ Mem=NULL;}RarVM::~RarVM(){ delete[] Mem;}void RarVM::Init(){ if (Mem==NULL) Mem=new byte[VM_MEMSIZE+4];}/********************************************************************* IS_VM_MEM macro checks if address belongs to VM memory pool (Mem). Only Mem data are always low endian regardless of machine architecture, so we need to convert them to native format when reading or writing. VM registers have endianness of host machine.**********************************************************************/#define IS_VM_MEM(a) (((byte*)a)>=Mem && ((byte*)a)<Mem+VM_MEMSIZE)inline uint RarVM::GetValue(bool ByteMode,uint *Addr){ if (ByteMode) {#ifdef BIG_ENDIAN if (IS_VM_MEM(Addr)) return(*(byte *)Addr); else return(*Addr & 0xff);#else return(*(byte *)Addr);#endif } else {#if defined(BIG_ENDIAN) || !defined(ALLOW_NOT_ALIGNED_INT) if (IS_VM_MEM(Addr)) { byte *B=(byte *)Addr; return UINT32((uint)B[0]|((uint)B[1]<<8)|((uint)B[2]<<16)|((uint)B[3]<<24)); } else return UINT32(*Addr);#else return UINT32(*Addr);#endif }}#if defined(BIG_ENDIAN) || !defined(ALLOW_NOT_ALIGNED_INT) #define GET_VALUE(ByteMode,Addr) GetValue(ByteMode,(uint *)Addr)#else #define GET_VALUE(ByteMode,Addr) ((ByteMode) ? (*(byte *)(Addr)):UINT32(*(uint *)(Addr)))#endifinline void RarVM::SetValue(bool ByteMode,uint *Addr,uint Value){ if (ByteMode) {#ifdef BIG_ENDIAN if (IS_VM_MEM(Addr)) *(byte *)Addr=Value; else *Addr=(*Addr & ~0xff)|(Value & 0xff);#else *(byte *)Addr=Value;#endif } else {#if defined(BIG_ENDIAN) || !defined(ALLOW_NOT_ALIGNED_INT) || !defined(PRESENT_INT32) if (IS_VM_MEM(Addr)) { ((byte *)Addr)[0]=(byte)Value; ((byte *)Addr)[1]=(byte)(Value>>8); ((byte *)Addr)[2]=(byte)(Value>>16); ((byte *)Addr)[3]=(byte)(Value>>24); } else *(uint *)Addr=Value;#else *(uint32 *)Addr=Value;#endif }}#if defined(BIG_ENDIAN) || !defined(ALLOW_NOT_ALIGNED_INT) || !defined(PRESENT_INT32) #define SET_VALUE(ByteMode,Addr,Value) SetValue(ByteMode,(uint *)Addr,Value)#else #define SET_VALUE(ByteMode,Addr,Value) ((ByteMode) ? (*(byte *)(Addr)=(Value)):(*(uint32 *)(Addr)=((uint32)(Value))))#endifvoid RarVM::SetLowEndianValue(uint *Addr,uint Value){#if defined(BIG_ENDIAN) || !defined(ALLOW_NOT_ALIGNED_INT) || !defined(PRESENT_INT32) ((byte *)Addr)[0]=(byte)Value; ((byte *)Addr)[1]=(byte)(Value>>8); ((byte *)Addr)[2]=(byte)(Value>>16); ((byte *)Addr)[3]=(byte)(Value>>24);#else *(uint32 *)Addr=Value;#endif}inline uint* RarVM::GetOperand(VM_PreparedOperand *CmdOp){ if (CmdOp->Type==VM_OPREGMEM) return((uint *)&Mem[(*CmdOp->Addr+CmdOp->Base)&VM_MEMMASK]); else return(CmdOp->Addr);}void RarVM::Execute(VM_PreparedProgram *Prg){ memcpy(R,Prg->InitR,sizeof(Prg->InitR)); unsigned int GlobalSize=Min(Prg->GlobalData.Size(),VM_GLOBALMEMSIZE); if (GlobalSize) memcpy(Mem+VM_GLOBALMEMADDR,&Prg->GlobalData[0],GlobalSize); unsigned int StaticSize=Min(Prg->StaticData.Size(),VM_GLOBALMEMSIZE-GlobalSize); if (StaticSize) memcpy(Mem+VM_GLOBALMEMADDR+GlobalSize,&Prg->StaticData[0],StaticSize); R[7]=VM_MEMSIZE; Flags=0; VM_PreparedCommand *PreparedCode=Prg->AltCmd ? Prg->AltCmd:&Prg->Cmd[0]; if (!ExecuteCode(PreparedCode,Prg->CmdCount)) PreparedCode[0].OpCode=VM_RET; uint NewBlockPos=GET_VALUE(false,&Mem[VM_GLOBALMEMADDR+0x20])&VM_MEMMASK; uint NewBlockSize=GET_VALUE(false,&Mem[VM_GLOBALMEMADDR+0x1c])&VM_MEMMASK; if (NewBlockPos+NewBlockSize>=VM_MEMSIZE) NewBlockPos=NewBlockSize=0; Prg->FilteredData=Mem+NewBlockPos; Prg->FilteredDataSize=NewBlockSize; Prg->GlobalData.Reset(); uint DataSize=Min(GET_VALUE(false,(uint*)&Mem[VM_GLOBALMEMADDR+0x30]),VM_GLOBALMEMSIZE-VM_FIXEDGLOBALSIZE); if (DataSize!=0) { Prg->GlobalData.Add(DataSize+VM_FIXEDGLOBALSIZE); memcpy(&Prg->GlobalData[0],&Mem[VM_GLOBALMEMADDR],DataSize+VM_FIXEDGLOBALSIZE); }}/*Note: Due to performance considerations RAR VM may set VM_FS, VM_FC, VM_FZ incorrectly for byte operands. These flags are always valid only for 32-bit operands. Check implementation of concrete VM command to see if it sets flags right.*/#define SET_IP(IP) \ if ((IP)>=CodeSize) \ return(true); \ if (--MaxOpCount<=0) \ return(false); \ Cmd=PreparedCode+(IP);bool RarVM::ExecuteCode(VM_PreparedCommand *PreparedCode,int CodeSize){ int MaxOpCount=25000000; VM_PreparedCommand *Cmd=PreparedCode; while (1) { uint *Op1=GetOperand(&Cmd->Op1); uint *Op2=GetOperand(&Cmd->Op2); switch(Cmd->OpCode) {#ifndef NORARVM case VM_MOV: SET_VALUE(Cmd->ByteMode,Op1,GET_VALUE(Cmd->ByteMode,Op2)); break;#ifdef VM_OPTIMIZE case VM_MOVB: SET_VALUE(true,Op1,GET_VALUE(true,Op2)); break; case VM_MOVD: SET_VALUE(false,Op1,GET_VALUE(false,Op2)); break;#endif case VM_CMP: { uint Value1=GET_VALUE(Cmd->ByteMode,Op1); uint Result=UINT32(Value1-GET_VALUE(Cmd->ByteMode,Op2)); Flags=Result==0 ? VM_FZ:(Result>Value1)|(Result&VM_FS); } break;#ifdef VM_OPTIMIZE case VM_CMPB: { uint Value1=GET_VALUE(true,Op1); uint Result=UINT32(Value1-GET_VALUE(true,Op2)); Flags=Result==0 ? VM_FZ:(Result>Value1)|(Result&VM_FS); } break; case VM_CMPD: { uint Value1=GET_VALUE(false,Op1); uint Result=UINT32(Value1-GET_VALUE(false,Op2)); Flags=Result==0 ? VM_FZ:(Result>Value1)|(Result&VM_FS); } break;#endif case VM_ADD: { uint Value1=GET_VALUE(Cmd->ByteMode,Op1); uint Result=UINT32(Value1+GET_VALUE(Cmd->ByteMode,Op2)); if (Cmd->ByteMode) { Result&=0xff; Flags=(Result<Value1)|(Result==0 ? VM_FZ:((Result&0x80) ? VM_FS:0)); } else Flags=(Result<Value1)|(Result==0 ? VM_FZ:(Result&VM_FS)); SET_VALUE(Cmd->ByteMode,Op1,Result); } break;#ifdef VM_OPTIMIZE case VM_ADDB: SET_VALUE(true,Op1,GET_VALUE(true,Op1)+GET_VALUE(true,Op2)); break; case VM_ADDD: SET_VALUE(false,Op1,GET_VALUE(false,Op1)+GET_VALUE(false,Op2)); break;#endif case VM_SUB: { uint Value1=GET_VALUE(Cmd->ByteMode,Op1); uint Result=UINT32(Value1-GET_VALUE(Cmd->ByteMode,Op2)); Flags=Result==0 ? VM_FZ:(Result>Value1)|(Result&VM_FS); SET_VALUE(Cmd->ByteMode,Op1,Result); } break;#ifdef VM_OPTIMIZE case VM_SUBB: SET_VALUE(true,Op1,GET_VALUE(true,Op1)-GET_VALUE(true,Op2)); break; case VM_SUBD: SET_VALUE(false,Op1,GET_VALUE(false,Op1)-GET_VALUE(false,Op2)); break;#endif case VM_JZ: if ((Flags & VM_FZ)!=0) { SET_IP(GET_VALUE(false,Op1)); continue; } break; case VM_JNZ: if ((Flags & VM_FZ)==0) { SET_IP(GET_VALUE(false,Op1)); continue; } break; case VM_INC: { uint Result=UINT32(GET_VALUE(Cmd->ByteMode,Op1)+1); if (Cmd->ByteMode) Result&=0xff; SET_VALUE(Cmd->ByteMode,Op1,Result); Flags=Result==0 ? VM_FZ:Result&VM_FS; } break;#ifdef VM_OPTIMIZE case VM_INCB: SET_VALUE(true,Op1,GET_VALUE(true,Op1)+1); break; case VM_INCD: SET_VALUE(false,Op1,GET_VALUE(false,Op1)+1); break;#endif case VM_DEC: { uint Result=UINT32(GET_VALUE(Cmd->ByteMode,Op1)-1); SET_VALUE(Cmd->ByteMode,Op1,Result); Flags=Result==0 ? VM_FZ:Result&VM_FS; } break;#ifdef VM_OPTIMIZE case VM_DECB: SET_VALUE(true,Op1,GET_VALUE(true,Op1)-1); break; case VM_DECD: SET_VALUE(false,Op1,GET_VALUE(false,Op1)-1); break;#endif case VM_JMP: SET_IP(GET_VALUE(false,Op1)); continue; case VM_XOR: { uint Result=UINT32(GET_VALUE(Cmd->ByteMode,Op1)^GET_VALUE(Cmd->ByteMode,Op2)); Flags=Result==0 ? VM_FZ:Result&VM_FS; SET_VALUE(Cmd->ByteMode,Op1,Result); } break; case VM_AND: { uint Result=UINT32(GET_VALUE(Cmd->ByteMode,Op1)&GET_VALUE(Cmd->ByteMode,Op2)); Flags=Result==0 ? VM_FZ:Result&VM_FS; SET_VALUE(Cmd->ByteMode,Op1,Result); } break; case VM_OR: { uint Result=UINT32(GET_VALUE(Cmd->ByteMode,Op1)|GET_VALUE(Cmd->ByteMode,Op2)); Flags=Result==0 ? VM_FZ:Result&VM_FS; SET_VALUE(Cmd->ByteMode,Op1,Result); } break; case VM_TEST: { uint Result=UINT32(GET_VALUE(Cmd->ByteMode,Op1)&GET_VALUE(Cmd->ByteMode,Op2)); Flags=Result==0 ? VM_FZ:Result&VM_FS; } break; case VM_JS: if ((Flags & VM_FS)!=0) { SET_IP(GET_VALUE(false,Op1)); continue; } break; case VM_JNS: if ((Flags & VM_FS)==0) { SET_IP(GET_VALUE(false,Op1)); continue; } break; case VM_JB: if ((Flags & VM_FC)!=0) { SET_IP(GET_VALUE(false,Op1)); continue; } break; case VM_JBE: if ((Flags & (VM_FC|VM_FZ))!=0) { SET_IP(GET_VALUE(false,Op1)); continue; } break; case VM_JA: if ((Flags & (VM_FC|VM_FZ))==0) { SET_IP(GET_VALUE(false,Op1)); continue; } break; case VM_JAE: if ((Flags & VM_FC)==0) { SET_IP(GET_VALUE(false,Op1)); continue; } break; case VM_PUSH: R[7]-=4; SET_VALUE(false,(uint *)&Mem[R[7]&VM_MEMMASK],GET_VALUE(false,Op1)); break; case VM_POP: SET_VALUE(false,Op1,GET_VALUE(false,(uint *)&Mem[R[7] & VM_MEMMASK])); R[7]+=4; break; case VM_CALL: R[7]-=4; SET_VALUE(false,(uint *)&Mem[R[7]&VM_MEMMASK],Cmd-PreparedCode+1); SET_IP(GET_VALUE(false,Op1)); continue; case VM_NOT: SET_VALUE(Cmd->ByteMode,Op1,~GET_VALUE(Cmd->ByteMode,Op1)); break; case VM_SHL: { uint Value1=GET_VALUE(Cmd->ByteMode,Op1); uint Value2=GET_VALUE(Cmd->ByteMode,Op2); uint Result=UINT32(Value1<<Value2); Flags=(Result==0 ? VM_FZ:(Result&VM_FS))|((Value1<<(Value2-1))&0x80000000 ? VM_FC:0); SET_VALUE(Cmd->ByteMode,Op1,Result); } break; case VM_SHR: { uint Value1=GET_VALUE(Cmd->ByteMode,Op1); uint Value2=GET_VALUE(Cmd->ByteMode,Op2); uint Result=UINT32(Value1>>Value2); Flags=(Result==0 ? VM_FZ:(Result&VM_FS))|((Value1>>(Value2-1))&VM_FC); SET_VALUE(Cmd->ByteMode,Op1,Result); } break; case VM_SAR: { uint Value1=GET_VALUE(Cmd->ByteMode,Op1); uint Value2=GET_VALUE(Cmd->ByteMode,Op2); uint Result=UINT32(((int)Value1)>>Value2); Flags=(Result==0 ? VM_FZ:(Result&VM_FS))|((Value1>>(Value2-1))&VM_FC); SET_VALUE(Cmd->ByteMode,Op1,Result); } break; case VM_NEG: { uint Result=UINT32(-GET_VALUE(Cmd->ByteMode,Op1)); Flags=Result==0 ? VM_FZ:VM_FC|(Result&VM_FS); SET_VALUE(Cmd->ByteMode,Op1,Result); } break;#ifdef VM_OPTIMIZE case VM_NEGB: SET_VALUE(true,Op1,-GET_VALUE(true,Op1)); break; case VM_NEGD: SET_VALUE(false,Op1,-GET_VALUE(false,Op1)); break;#endif case VM_PUSHA: { const int RegCount=sizeof(R)/sizeof(R[0]); for (int I=0,SP=R[7]-4;I<RegCount;I++,SP-=4) SET_VALUE(false,(uint *)&Mem[SP & VM_MEMMASK],R[I]); R[7]-=RegCount*4; } break; case VM_POPA: { const int RegCount=sizeof(R)/sizeof(R[0]); for (uint I=0,SP=R[7];I<RegCount;I++,SP+=4) R[7-I]=GET_VALUE(false,(uint *)&Mem[SP & VM_MEMMASK]); } break; case VM_PUSHF: R[7]-=4; SET_VALUE(false,(uint *)&Mem[R[7]&VM_MEMMASK],Flags); break; case VM_POPF: Flags=GET_VALUE(false,(uint *)&Mem[R[7] & VM_MEMMASK]); R[7]+=4; break; case VM_MOVZX: SET_VALUE(false,Op1,GET_VALUE(true,Op2)); break; case VM_MOVSX: SET_VALUE(false,Op1,(signed char)GET_VALUE(true,Op2)); break; case VM_XCHG: { uint Value1=GET_VALUE(Cmd->ByteMode,Op1); SET_VALUE(Cmd->ByteMode,Op1,GET_VALUE(Cmd->ByteMode,Op2)); SET_VALUE(Cmd->ByteMode,Op2,Value1); } break; case VM_MUL: { uint Result=GET_VALUE(Cmd->ByteMode,Op1)*GET_VALUE(Cmd->ByteMode,Op2); SET_VALUE(Cmd->ByteMode,Op1,Result); } break; case VM_DIV: { uint Divider=GET_VALUE(Cmd->ByteMode,Op2); if (Divider!=0) { uint Result=GET_VALUE(Cmd->ByteMode,Op1)/Divider; SET_VALUE(Cmd->ByteMode,Op1,Result); } } break; case VM_ADC: { uint Value1=GET_VALUE(Cmd->ByteMode,Op1); uint FC=(Flags&VM_FC); uint Result=UINT32(Value1+GET_VALUE(Cmd->ByteMode,Op2)+FC); if (Cmd->ByteMode) Result&=0xff; Flags=(Result<Value1 || Result==Value1 && FC)|(Result==0 ? VM_FZ:(Result&VM_FS)); SET_VALUE(Cmd->ByteMode,Op1,Result); } break; case VM_SBB: { uint Value1=GET_VALUE(Cmd->ByteMode,Op1); uint FC=(Flags&VM_FC); uint Result=UINT32(Value1-GET_VALUE(Cmd->ByteMode,Op2)-FC); if (Cmd->ByteMode) Result&=0xff; Flags=(Result>Value1 || Result==Value1 && FC)|(Result==0 ? VM_FZ:(Result&VM_FS)); SET_VALUE(Cmd->ByteMode,Op1,Result); } break;#endif case VM_RET: if (R[7]>=VM_MEMSIZE) return(true); SET_IP(GET_VALUE(false,(uint *)&Mem[R[7] & VM_MEMMASK])); R[7]+=4; continue;#ifdef VM_STANDARDFILTERS case VM_STANDARD: ExecuteStandardFilter((VM_StandardFilters)Cmd->Op1.Data); break;#endif case VM_PRINT: break; } Cmd++; --MaxOpCount; }}void RarVM::Prepare(byte *Code,int CodeSize,VM_PreparedProgram *Prg){ InitBitInput(); memcpy(InBuf,Code,Min(CodeSize,BitInput::MAX_SIZE)); byte XorSum=0; for (int I=1;I<CodeSize;I++) XorSum^=Code[I]; faddbits(8); Prg->CmdCount=0; if (XorSum==Code[0]) {#ifdef VM_STANDARDFILTERS VM_StandardFilters FilterType=IsStandardFilter(Code,CodeSize); if (FilterType!=VMSF_NONE) { Prg->Cmd.Add(1); VM_PreparedCommand *CurCmd=&Prg->Cmd[Prg->CmdCount++]; CurCmd->OpCode=VM_STANDARD; CurCmd->Op1.Data=FilterType; CurCmd->Op1.Addr=&CurCmd->Op1.Data;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -