📄 h264quantise.vhd
字号:
-------------------------------------------------------------------------
-- H264 quantise for residuals - VHDL
--
-- Written by Andy Henson
-- Copyright (c) 2008 Zexia Access Ltd
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are met:
-- * Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
-- * Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution.
-- * Neither the name of the Zexia Access Ltd nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY ZEXIA ACCESS LTD ``AS IS'' AND ANY
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-- DISCLAIMED. IN NO EVENT SHALL ZEXIA ACCESS LTD OR ANDY HENSON BE LIABLE FOR ANY
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-------------------------------------------------------------------------
-- This is the core quantisation for H264 for 4x4 residuals
-- Input: YN00..YN33 the input matrix in zigzag order (at time TQ)
-- Output: Z (clipped scaled quantised coefficients) in reverse zigzag order at TQ+4
-- ENABLE should be high for duration of 4x4 subblock
-- when ENABLE goes low, counters will be reset to prepare for new transform
-- there is no requirement for ENABLE to go low; subblocks can be back-to-back
-- only one quantise per clock in this version
-- 4 clock latency on quantise: latch, multiply, scale, clip.
-- XST: 93 slices + 1 MULT18X18; 211 MHz; Xpower 2mW @ 120MHz
-- CycloneIII: 156 LEs + 2 MUL(9bit); 163 MHz
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL; --note: signed
use ieee.numeric_std.ALL;
entity h264quantise is
port (
CLK : in std_logic; --pixel clock
ENABLE : in std_logic; --values transfered only when this is 1
QP : in std_logic_vector(5 downto 0); --0..51 as specified in standard
DCCI : in std_logic; --2x2 DC chroma in
YNIN : in std_logic_vector(15 downto 0);
ZOUT : out std_logic_vector(11 downto 0) := (others=>'0');
DCCO : out std_logic; --2x2 DC chroma out
VALID : out std_logic := '0' -- enable delayed to same as YOUT timing
);
end h264quantise;
architecture quant of h264quantise is
--
signal zig : std_logic_vector(3 downto 0) := x"F";
signal qmf : std_logic_vector(13 downto 0) := (others=>'0');
signal qmfA : std_logic_vector(13 downto 0) := (others=>'0');
signal qmfB : std_logic_vector(13 downto 0) := (others=>'0');
signal qmfC : std_logic_vector(13 downto 0) := (others=>'0');
signal enab1 : std_logic := '0';
signal enab2 : std_logic := '0';
signal enab3 : std_logic := '0';
signal dcc1 : std_logic := '0';
signal dcc2 : std_logic := '0';
signal dcc3 : std_logic := '0';
signal yn1 : std_logic_vector(15 downto 0);
signal zr : std_logic_vector(30 downto 0);
signal zz : std_logic_vector(15 downto 0);
--
begin
--quantisation multiplier factors
--we need to multiply by PF (to complete transform) and divide by quantisation qstep (ie QP rescaled)
--so we transform it PF/qstep(QP) to qmf/2^n and do a single multiply
qmfA <=
CONV_STD_LOGIC_VECTOR(13107,14) when QP=0 or QP=6 or QP=12 or QP=18 or QP=24 or QP=30 or QP=36 or QP=42 or QP=48 else
CONV_STD_LOGIC_VECTOR(11916,14) when QP=1 or QP=7 or QP=13 or QP=19 or QP=25 or QP=31 or QP=37 or QP=43 or QP=49 else
CONV_STD_LOGIC_VECTOR(10082,14) when QP=2 or QP=8 or QP=14 or QP=20 or QP=26 or QP=32 or QP=38 or QP=44 or QP=50 else
CONV_STD_LOGIC_VECTOR(9362,14) when QP=3 or QP=9 or QP=15 or QP=21 or QP=27 or QP=33 or QP=39 or QP=45 or QP=51 else
CONV_STD_LOGIC_VECTOR(8192,14) when QP=4 or QP=10 or QP=16 or QP=22 or QP=28 or QP=34 or QP=40 or QP=46 else
CONV_STD_LOGIC_VECTOR(7282,14);
qmfB <=
CONV_STD_LOGIC_VECTOR(5243,14) when QP=0 or QP=6 or QP=12 or QP=18 or QP=24 or QP=30 or QP=36 or QP=42 or QP=48 else
CONV_STD_LOGIC_VECTOR(4660,14) when QP=1 or QP=7 or QP=13 or QP=19 or QP=25 or QP=31 or QP=37 or QP=43 or QP=49 else
CONV_STD_LOGIC_VECTOR(4194,14) when QP=2 or QP=8 or QP=14 or QP=20 or QP=26 or QP=32 or QP=38 or QP=44 or QP=50 else
CONV_STD_LOGIC_VECTOR(3647,14) when QP=3 or QP=9 or QP=15 or QP=21 or QP=27 or QP=33 or QP=39 or QP=45 or QP=51 else
CONV_STD_LOGIC_VECTOR(3355,14) when QP=4 or QP=10 or QP=16 or QP=22 or QP=28 or QP=34 or QP=40 or QP=46 else
CONV_STD_LOGIC_VECTOR(2893,14);
qmfC <=
CONV_STD_LOGIC_VECTOR(8066,14) when QP=0 or QP=6 or QP=12 or QP=18 or QP=24 or QP=30 or QP=36 or QP=42 or QP=48 else
CONV_STD_LOGIC_VECTOR(7490,14) when QP=1 or QP=7 or QP=13 or QP=19 or QP=25 or QP=31 or QP=37 or QP=43 or QP=49 else
CONV_STD_LOGIC_VECTOR(6554,14) when QP=2 or QP=8 or QP=14 or QP=20 or QP=26 or QP=32 or QP=38 or QP=44 or QP=50 else
CONV_STD_LOGIC_VECTOR(5825,14) when QP=3 or QP=9 or QP=15 or QP=21 or QP=27 or QP=33 or QP=39 or QP=45 or QP=51 else
CONV_STD_LOGIC_VECTOR(5243,14) when QP=4 or QP=10 or QP=16 or QP=22 or QP=28 or QP=34 or QP=40 or QP=46 else
CONV_STD_LOGIC_VECTOR(4559,14);
--
process(CLK)
variable rr : std_logic_vector(2 downto 0);
begin
if rising_edge(CLK) then
if ENABLE='0' or DCCI='1' then
zig <= x"F";
else
zig <= zig - 1;
end if;
--
enab1 <= ENABLE;
enab2 <= enab1;
enab3 <= enab2;
VALID <= enab3;
--
dcc1 <= DCCI;
dcc2 <= dcc1;
dcc3 <= dcc2;
DCCO <= dcc3;
--
if ENABLE='1' then
if DCCI='1' then
--dc uses 0,0 parameters div 2
qmf <= '0'&qmfA(13 downto 1);
elsif zig=0 or zig=3 or zig=5 or zig=11 then
--positions 0,0; 0,2; 2,0; 2,2 need one set of parameters
qmf <= qmfA;
elsif zig=4 or zig=10 or zig=12 or zig=15 then
--positions 1,1; 1,3; 3,1; 3,3 need another set of parameters
qmf <= qmfB;
else
--other positions: default parameters
qmf <= qmfC;
end if;
yn1 <= YNIN; --data ready for scaling
end if;
if enab1='1' then
zr <= yn1 * ('0'&qmf); --quantise
end if;
--two bits of rounding (and leading zero)
--rr := b"010"; --simple round-to-middle
--rr := b"000"; --no rounding (=> -ve numbers round away from zero)
rr := b"0"&zr(29)&'1'; --round to zero if <0.75
if enab2='1' then
if QP < 6 then
zz <= zr(28 downto 13) + rr;
elsif QP < 12 then
zz <= zr(29 downto 14) + rr;
elsif QP < 18 then
zz <= zr(30 downto 15) + rr;
elsif QP < 24 then
zz <= sxt(zr(30 downto 16),16) + rr;
elsif QP < 30 then
zz <= sxt(zr(30 downto 17),16) + rr;
elsif QP < 36 then
zz <= sxt(zr(30 downto 18),16) + rr;
elsif QP < 42 then
zz <= sxt(zr(30 downto 19),16) + rr;
else
zz <= sxt(zr(30 downto 20),16) + rr;
end if;
end if;
if enab3='1' then
if zz(15)=zz(14) and zz(15)=zz(13) and zz(13 downto 2)/=x"800" then
ZOUT <= zz(13 downto 2);
elsif zz(15)='0' then
ZOUT <= x"7FF"; --clip max
else
ZOUT <= x"801"; --clip min
end if;
end if;
end if;
end process;
--
end quant;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -