⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 h264topskeleton.vhd

📁 VHDL语言实现H.264的opencore
💻 VHD
📖 第 1 页 / 共 2 页
字号:
-------------------------------------------------------------------------
-- H264 top level (skeleton) - VHDL
-- 
-- Written by Andy Henson
-- Copyright (c) 2008 Zexia Access Ltd
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are met:
--    * Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--    * Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in the
--      documentation and/or other materials provided with the distribution.
--    * Neither the name of the Zexia Access Ltd nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY ZEXIA ACCESS LTD ``AS IS'' AND ANY
-- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-- DISCLAIMED. IN NO EVENT SHALL ZEXIA ACCESS LTD OR ANDY HENSON BE LIABLE FOR ANY
-- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
-- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
-- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
-- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-------------------------------------------------------------------------

-- This is an example top level module for the H264 submodules.
-- Each implementation will differ at the top level due to differing
-- number of video streams, resolution, and RAM type and interface.
-- This is thus just a skeleton implementation.

-- Generic design: (please see pdf file with nice block diagram)
-- There are two almost independant dataflows here, the predict/quantise
-- loop with dequantise reconstruct feedback to next prediction runs at
-- the front, outputing to xbuffer and header modules.
-- Once a macroblock has completed in the predict/quantise loop, the cavlc
-- backend takes the data: the header module outputs the header and
-- the xbuffer module pumps stuff through cavlc module and both end up
-- via tobytes.  This proceeds as the next macroblock is being processed
-- in predict/quantise.
-- at the end of a line, we wait for DONE asserted by xbuffer to say
-- all quiescent (neither front end not back end busy; although there
-- is still data being clocked out via cavlc for another 20 clocks or so
-- and tobytes for another up to 100 clocks depending on size of fifo.

-- All this is regulated by a number of READY lines which pause earlier stages
-- if needed.  tobytes and cavlc pause the xbuffer pump (but not until the end
-- of the current submb - up to 16 clks).  xbuffer can pause prediction.  And
-- the prediction controls the feed of data in from image buffers.  To overcome
-- the "floppiness" of the feedback (up to 40 clks), there is a
-- fifo in tobytes as well as the ram in xbuffer module.

-- QP: note there is only a single QPvalue used here, really there should be
-- a separate one for chroma for QP>=30 or chroma_qp_index_offset/=0 (in PP).
-- latch either QPy or QPc on entry to coretransform, latch on entry to quantise
-- and dequantise when enable low.  That'll work.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use ieee.numeric_std.ALL;
USE std.textio.all;
use work.h264.all;
use work.misc.all;

--pre-headers (suggested)
--SPS: 00 00 00 01 ; 67 42 00 28 da 05 82 59 	-- contains size of image 352x288
--PPS: 00 00 00 01 ; 68 ce 38 80				-- default zero params
--Slice: 00 00 00 01 (rest of slice is generated by h264header).

entity h264topskeleton is
	generic (
		IMGWIDTH : integer := 352;	--sample stuff is 352x288
		IMGHEIGHT : integer := 288;
		IWBITS : integer := 9
	);
	port (
		signal CLK : in std_logic;			--clock
		signal CLK2 : in std_logic;			--2x clock
		--
		-- controls
		signal NEWSLICE : in std_logic;			--reset: this is the first a slice
		signal NEWLINE : in std_logic;			--newline: first mb and submb
		signal QP : in std_logic_vector(5 downto 0);
		signal xbuffer_DONE : out std_logic := '0';
		--
		-- inputs (from buffer)
		signal intra4x4_READYI : out std_logic := '0';				--ready for enable when this set
		signal intra4x4_STROBEI : in std_logic := '0';				--values transfered only when this is 1
		signal intra4x4_DATAI : in std_logic_vector(31 downto 0) := (others => '0');
		signal intra8x8cc_readyi : out std_logic := '0';				--ready for enable when this set
		signal intra8x8cc_strobei : in std_logic := '0';				--values transfered only when this is 1
		signal intra8x8cc_datai : in std_logic_vector(31 downto 0) := (others => '0');
		--
		-- outputs
		signal tobytes_BYTE : out std_logic_vector(7 downto 0) := (others=>'0');
		signal tobytes_STROBE : out std_logic := '0';	-- BYTE valid
		signal tobytes_DONE : out std_logic := '0'		-- NAL all done
	);
end h264topskeleton;

architecture hw of h264topskeleton is
	signal intra4x4_TOPI : std_logic_vector(31 downto 0) := (others => '0');
	signal intra4x4_TOPMI : std_logic_vector(3 downto 0) := (others => '0');
	signal intra4x4_STROBEO : std_logic := '0';				--values transfered out when this is 1
	signal intra4x4_READYO : std_logic := '0';				--when ready for out
	signal intra4x4_DATAO : std_logic_vector(35 downto 0) := (others => '0');
	signal intra4x4_BASEO : std_logic_vector(31 downto 0) := (others => '0');
	signal intra4x4_MSTROBEO : std_logic := '0';			--mode transfered only when this is 1	
	signal intra4x4_MODEO : std_logic_vector(3 downto 0) := (others => '0');	--0..8 prediction type
	signal intra4x4_PMODEO : std_logic := '0';	--prediction type same
	signal intra4x4_RMODEO : std_logic_vector(2 downto 0) := (others => '0');	--prediction type rem
	signal intra4x4_XXO : std_logic_vector(1 downto 0) := (others => '0');
	signal intra4x4_XXINC : std_logic := '0';
	signal intra4x4_CHREADY : std_logic := '0';
	--
	signal intra8x8cc_TOPI : std_logic_vector(31 downto 0) := (others => '0');
	signal intra8x8cc_STROBEO : std_logic := '0';				--values transfered out when this is 1
	signal intra8x8cc_READYO : std_logic := '0';				--when ready for out
	signal intra8x8cc_DATAO : std_logic_vector(35 downto 0) := (others => '0');
	signal intra8x8cc_BASEO : std_logic_vector(31 downto 0) := (others => '0');
	signal intra8x8cc_dcstrobeo : std_logic := '0';				--when ready for out
	signal intra8x8cc_dcdatao : std_logic_vector(15 downto 0) := (others => '0');
	signal intra8x8cc_CMODEO : std_logic_vector(1 downto 0) := (others => '0');	--0..8 prediction type
	signal intra8x8cc_XXO : std_logic_vector(1 downto 0) := (others => '0');
	signal intra8x8cc_XXC : std_logic := '0';
	signal intra8x8cc_XXINC : std_logic := '0';
	--
	signal header_CMODE : std_logic_vector(1 downto 0) := b"00";	--intra_chroma_pred_mode
	signal header_VE : std_logic_vector(19 downto 0) := (others=>'0');
	signal header_VL : std_logic_vector(4 downto 0) := (others=>'0');
	signal header_VALID : std_logic := '0';	-- VE/VL valid
	--
	signal coretransform_READY : std_logic := '0';				--ready for enable when this set
	signal coretransform_ENABLE : std_logic := '0';				--values transfered only when this is 1
	signal coretransform_XXIN : std_logic_vector(35 downto 0) := (others => '0');
	signal coretransform_valid : std_logic := '0';
	signal coretransform_ynout : std_logic_vector(13 downto 0);
	--
	signal dctransform_VALID : std_logic := '0';
	signal dctransform_yyout : std_logic_vector(15 downto 0);
	signal dctransform_readyo : std_logic := '0';
	--
	signal quantise_ENABLE : std_logic := '0';
	signal quantise_YNIN : std_logic_vector(15 downto 0);
	signal quantise_valid : std_logic := '0';
	signal quantise_zout : std_logic_vector(11 downto 0);
	signal quantise_dcco : std_logic := '0';
	--
	signal dequantise_enable : std_logic := '0';
	signal dequantise_zin : std_logic_vector(11 downto 0);
	signal dequantise_last : std_logic := '0';
	signal dequantise_valid : std_logic := '0';
	signal dequantise_dcco : std_logic := '0';
	signal dequantise_wout : std_logic_vector(15 downto 0);
	--
	signal invdctransform_enable : std_logic := '0';
	signal invdctransform_zin : std_logic_vector(15 downto 0);
	signal invdctransform_valid : std_logic := '0';
	signal invdctransform_yyout : std_logic_vector(15 downto 0);
	signal invdctransform_ready : std_logic := '0';
	--
	--signal invtransform_enable : std_logic := '0';
	--signal invtransform_win : std_logic_vector(15 downto 0);
	--signal invtransform_last : std_logic := '0';
	signal invtransform_valid : std_logic := '0';
	signal invtransform_xout : std_logic_vector(35 downto 0);
	--
	signal recon_BSTROBEI : std_logic := '0';				--values transfered only when this is 1
	signal recon_basei : std_logic_vector(31 downto 0) := (others => '0');
	signal recon_FBSTROBE : std_logic := '0';				--feedback transfered only when this is 1
	signal recon_FBCSTROBE : std_logic := '0';				--feedback transfered only when this is 1
	signal recon_FEEDB : std_logic_vector(31 downto 0) := (others => '0');
	--
	signal xbuffer_NLOAD : std_logic := '0';		--load for CAVLC NOUT
	signal xbuffer_NX : std_logic_vector(2 downto 0);	--X value for NIN/NOUT
	signal xbuffer_NY : std_logic_vector(2 downto 0);	--Y value for NIN/NOUT
	signal xbuffer_NV : std_logic_vector(1 downto 0);	--valid flags for NIN/NOUT (1=left, 2=top, 3=avg)
	signal xbuffer_NXINC : std_logic := '0';		--increment for X macroblock counter
	signal xbuffer_READYI : std_logic := '0';
	--signal xbuffer_DCREADYI : std_logic := '0';
	signal xbuffer_CCIN : std_logic := '0';
	--
	signal cavlc_ENABLE : std_logic := '0';				--values transfered only when this is 1
	signal cavlc_READY : std_logic;				--values transfered only when this is 1
	signal cavlc_VIN : std_logic_vector(11 downto 0) := x"000";		--12bits max (+/- 2048)
	signal cavlc_NIN : std_logic_vector(4 downto 0) :=b"00000";	--N coeffs nearby mb
	signal cavlc_VE : std_logic_vector(24 downto 0) := (others=>'0');
	signal cavlc_VL : std_logic_vector(4 downto 0) := (others=>'0');
	signal cavlc_VALID : std_logic := '0';	-- enable delayed to same as VE/VL
	signal cavlc_XSTATE : std_logic_vector(2 downto 0) := (others=>'0');
	signal cavlc_NOUT : std_logic_vector(4 downto 0);
	--
	signal tobytes_READY : std_logic;					--soft "ready" flag
	signal tobytes_VE : std_logic_vector(24 downto 0) := (others=>'0');
	signal tobytes_VL : std_logic_vector(4 downto 0) := (others=>'0');
	signal tobytes_VALID : std_logic := '0';	-- VE/VL1 valid
	--
	signal align_VALID : std_logic := '0';
	--
	signal ninx : std_logic_vector(7 downto 0) := x"00";	--N coeffs nearby mb: left
	signal ninl : std_logic_vector(4 downto 0) := b"00000";	--N coeffs nearby mb: left
	signal nint : std_logic_vector(4 downto 0) := b"00000";	--N coeffs nearby mb: top
	signal ninsum : std_logic_vector(5 downto 0) := b"000000";	--N coeffs nearby mb
	type Tnin is array (natural range <>) of std_logic_vector(4 downto 0);
	signal ninleft : Tnin(7 downto 0) := (others=>(others=>'0'));
	signal nintop : Tnin(2047 downto 0) := (others=>(others=>'0'));	--macroblocks*8
	--
	type Tfullrow is array (natural range <>) of std_logic_vector(31 downto 0);
	type Tfullrowm is array (natural range <>) of std_logic_vector(3 downto 0);
	signal toppix : Tfullrow(IMGWIDTH-1 downto 0) := (others=>(others=>'0'));	--actually units of 4 pixels
	signal toppixcc : Tfullrow(IMGWIDTH-1 downto 0) := (others=>(others=>'0'));	--actually units of 4 pixels
	signal topmode : Tfullrowm(IMGWIDTH-1 downto 0) := (others=>x"0");
	signal mbx : std_logic_vector(IWBITS-1 downto 0) := (others=>'0');	--macroblock x counter
	signal mbxcc : std_logic_vector(IWBITS-1 downto 0) := (others=>'0'); --macroblock x counter for chroma
	--
begin
	--
	intra4x4 : h264intra4x4
	port map (
		CLK => clk2,
		--
		-- in interface:
		NEWSLICE => NEWSLICE,
		NEWLINE => NEWLINE,
		STROBEI => intra4x4_strobei,
		DATAI => intra4x4_datai,
		READYI => intra4x4_readyi,
		--
		-- top interface:
		TOPI => intra4x4_topi,
		TOPMI => intra4x4_topmi,
		XXO => intra4x4_xxo,
		XXINC => intra4x4_xxinc,
		--
		-- feedback interface:
		FEEDBI => recon_FEEDB(31 downto 24),
		FBSTROBE => recon_FBSTROBE,
		--
		-- out interface:
		STROBEO => intra4x4_strobeo,
		DATAO => intra4x4_datao,
		BASEO => intra4x4_baseo,
		READYO => intra4x4_readyo,
		MSTROBEO => intra4x4_mstrobeo,
		MODEO => intra4x4_MODEO,
		PMODEO => intra4x4_PMODEO,
		RMODEO => intra4x4_RMODEO,
		--
		CHREADY => intra4x4_CHREADY
	);
	intra4x4_readyo <= coretransform_ready and xbuffer_readyi;-- and slowready;
	intra4x4_TOPI <= toppix(conv_integer(mbx & intra4x4_XXO));
	intra4x4_TOPMI <= topmode(conv_integer(mbx & intra4x4_XXO));
	--
	intra8x8cc : h264intra8x8cc
	port map (
		CLK2 => clk2,
		--
		-- in interface:
		NEWSLICE => NEWSLICE,
		NEWLINE => NEWLINE,
		STROBEI => intra8x8cc_strobei,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -