📄 kf_predict.m
字号:
%KF_PREDICT Perform Kalman Filter prediction step
%
% Syntax:
% [X,P] = KF_PREDICT(X,P,A,Q,B,U)
%
% In:
% X - Nx1 mean state estimate of previous step
% P - NxN state covariance of previous step
% A - Transition matrix of discrete model (optional, default identity)
% Q - Process noise of discrete model (optional, default zero)
% B - Input effect matrix (optional, default identity)
% U - Constant input (optional, default empty)
%
% Out:
% X - Predicted state mean
% P - Predicted state covariance
%
% Description:
% Perform Kalman Filter prediction step. The model is
%
% x[k] = A*x[k-1] + B*u[k-1] + q, q ~ N(0,Q).
%
% The predicted state is distributed as follows:
%
% p(x[k] | x[k-1]) = N(x[k] | A*x[k-1] + B*u[k-1], Q[k-1])
%
% The predicted mean x-[k] and covariance P-[k] are calculated
% with the following equations:
%
% m-[k] = A*x[k-1] + B*u[k-1]
% P-[k] = A*P[k-1]*A' + Q.
%
% If there is no input u present then the first equation reduces to
% m-[k] = A*x[k-1]
%
% History:
%
% 26.2.2007 JH Added the distribution model for the predicted state
% and equations for calculating the predicted state mean and
% covariance to the description section.
%
% See also:
% KF_UPDATE, LTI_DISC, EKF_PREDICT, EKF_UPDATE
% Copyright (C) 2002-2006 Simo S鋜kk
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -