📄 uimm_predict.m
字号:
%IMM_PREDICT UKF based Interacting Multiple Model (IMM) Filter prediction step%% Syntax:% [X_p,P_p,c_j,X,P] = UIMM_PREDICT(X_ip,P_ip,MU_ip,p_ij,ind,dims,A,a,param,Q)%% In:% X_ip - Cell array containing N^j x 1 mean state estimate vector for% each model j after update step of previous time step% P_ip - Cell array containing N^j x N^j state covariance matrix for % each model j after update step of previous time step% MU_ip - Vector containing the model probabilities at previous time step% p_ij - Model transition matrix% ind - Indices of state components for each model as a cell array% dims - Total number of different state components in the combined system% A - Dynamic model matrices for each linear model as a cell array% a - Dynamic model functions for each non-linear model% param - Parameters of a% Q - Process noise matrices for each model as a cell array.%% Out:% X_p - Predicted state mean for each model as a cell array% P_p - Predicted state covariance for each model as a cell array% c_j - Normalizing factors for mixing probabilities% X - Combined predicted state mean estimate% P - Combined predicted state covariance estimate% % Description:% IMM-UKF filter prediction step. If some of the models have linear% dynamics standard Kalman filter prediction step is used for those.%% See also:% UIMM_UPDATE, UIMM_SMOOTH% History:% 01.11.2007 JH The first official version.%% Copyright (C) 2007 Jouni Hartikainen%% $Id: imm_update.m 111 2007-11-01 12:09:23Z jmjharti $%% This software is distributed under the GNU General Public % Licence (version 2 or later); please refer to the file % Licence.txt, included with the software, for details.function [X_p,P_p,c_j,X,P] = uimm_predict(X_ip,P_ip,MU_ip,p_ij,ind,dims,A,a,param,Q) % Number of models m = length(X_ip); % Default values for state mean and covariance MM_def = zeros(dims,1); PP_def = diag(20*ones(dims,1)); % Normalizing factors for mixing probabilities c_j = zeros(1,m); for j = 1:m for i = 1:m c_j(j) = c_j(j) + p_ij(i,j).*MU_ip(i); end end % Mixing probabilities MU_ij = zeros(m,m); for i = 1:m for j = 1:m MU_ij(i,j) = p_ij(i,j) * MU_ip(i) / c_j(j); end end % Calculate the mixed state mean for each filter X_0j = cell(1,m); for j = 1:m X_0j{j} = zeros(dims,1); for i = 1:m X_0j{j}(ind{i}) = X_0j{j}(ind{i}) + X_ip{i}*MU_ij(i,j); end end % Calculate the mixed state covariance for each filter P_0j = cell(1,m); for j = 1:m P_0j{j} = zeros(dims,dims); for i = 1:m P_0j{j}(ind{i},ind{i}) = P_0j{j}(ind{i},ind{i}) + MU_ij(i,j)*(P_ip{i} + (X_ip{i}-X_0j{j}(ind{i}))*(X_ip{i}-X_0j{j}(ind{i}))'); end end % Space for predictions X_p = cell(1,m); P_p = cell(1,m); % Make predictions for each model for i = 1:m if isempty(a) | isempty(a{i}) [X_p{i}, P_p{i}] = kf_predict(X_0j{i}(ind{i}),P_0j{i}(ind{i},ind{i}),A{i},Q{i}); else [X_p{i}, P_p{i}] = ukf_predict1(X_0j{i}(ind{i}),P_0j{i}(ind{i},ind{i}),a{i},Q{i},param{i}); end end % Output the combined predicted state mean and covariance, if wanted. if nargout > 3 % Space for estimates X = zeros(dims,1); P = zeros(dims,dims); % Predicted state mean for i = 1:m X(ind{i}) = X(ind{i}) + MU_ip(i)*X_p{i}; end % Predicted state covariance for i = 1:m P(ind{i},ind{i}) = P(ind{i},ind{i}) + MU_ip(i)*(P_p{i} + (X_ip{i}-X(ind{i}))*(X_i{i}-X(ind{i}))'); end end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -