⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 uimm_predict.m

📁 kalman滤波
💻 M
字号:
%IMM_PREDICT  UKF based Interacting Multiple Model (IMM) Filter prediction step%% Syntax:%   [X_p,P_p,c_j,X,P] = UIMM_PREDICT(X_ip,P_ip,MU_ip,p_ij,ind,dims,A,a,param,Q)%% In:%   X_ip  - Cell array containing N^j x 1 mean state estimate vector for%           each model j after update step of previous time step%   P_ip  - Cell array containing N^j x N^j state covariance matrix for %           each model j after update step of previous time step%   MU_ip - Vector containing the model probabilities at previous time step%   p_ij  - Model transition matrix%   ind   - Indices of state components for each model as a cell array%   dims  - Total number of different state components in the combined system%   A     - Dynamic model matrices for each linear model as a cell array%   a     - Dynamic model functions for each non-linear model%   param - Parameters of a%   Q     - Process noise matrices for each model as a cell array.%% Out:%   X_p  - Predicted state mean for each model as a cell array%   P_p  - Predicted state covariance for each model as a cell array%   c_j  - Normalizing factors for mixing probabilities%   X    - Combined predicted state mean estimate%   P    - Combined predicted state covariance estimate%   % Description:%   IMM-UKF filter prediction step. If some of the models have linear%   dynamics standard Kalman filter prediction step is used for those.%% See also:%   UIMM_UPDATE, UIMM_SMOOTH% History:%   01.11.2007 JH The first official version.%% Copyright (C) 2007 Jouni Hartikainen%% $Id: imm_update.m 111 2007-11-01 12:09:23Z jmjharti $%% This software is distributed under the GNU General Public % Licence (version 2 or later); please refer to the file % Licence.txt, included with the software, for details.function [X_p,P_p,c_j,X,P] = uimm_predict(X_ip,P_ip,MU_ip,p_ij,ind,dims,A,a,param,Q)    % Number of models     m = length(X_ip);        % Default values for state mean and covariance    MM_def = zeros(dims,1);    PP_def = diag(20*ones(dims,1));    % Normalizing factors for mixing probabilities    c_j = zeros(1,m);    for j = 1:m        for i = 1:m            c_j(j) = c_j(j) + p_ij(i,j).*MU_ip(i);        end    end    % Mixing probabilities    MU_ij = zeros(m,m);    for i = 1:m        for j = 1:m            MU_ij(i,j) = p_ij(i,j) * MU_ip(i) / c_j(j);        end    end    % Calculate the mixed state mean for each filter    X_0j = cell(1,m);    for j = 1:m        X_0j{j} = zeros(dims,1);        for i = 1:m            X_0j{j}(ind{i}) = X_0j{j}(ind{i}) + X_ip{i}*MU_ij(i,j);        end    end        % Calculate the mixed state covariance for each filter    P_0j = cell(1,m);    for j = 1:m        P_0j{j} = zeros(dims,dims);        for i = 1:m            P_0j{j}(ind{i},ind{i}) = P_0j{j}(ind{i},ind{i}) + MU_ij(i,j)*(P_ip{i} + (X_ip{i}-X_0j{j}(ind{i}))*(X_ip{i}-X_0j{j}(ind{i}))');        end    end    % Space for predictions    X_p = cell(1,m);    P_p = cell(1,m);    % Make predictions for each model    for i = 1:m        if isempty(a) | isempty(a{i})            [X_p{i}, P_p{i}] = kf_predict(X_0j{i}(ind{i}),P_0j{i}(ind{i},ind{i}),A{i},Q{i});        else            [X_p{i}, P_p{i}] = ukf_predict1(X_0j{i}(ind{i}),P_0j{i}(ind{i},ind{i}),a{i},Q{i},param{i});        end    end    % Output the combined predicted state mean and covariance, if wanted.    if nargout > 3        % Space for estimates        X = zeros(dims,1);        P = zeros(dims,dims);                % Predicted state mean        for i = 1:m            X(ind{i}) = X(ind{i}) + MU_ip(i)*X_p{i};        end        % Predicted state covariance        for i = 1:m            P(ind{i},ind{i}) = P(ind{i},ind{i}) + MU_ip(i)*(P_p{i} + (X_ip{i}-X(ind{i}))*(X_i{i}-X(ind{i}))');        end    end        

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -