⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 compressor.vhd

📁 JPEG标准下图象压缩的vhdl实现工程
💻 VHD
📖 第 1 页 / 共 5 页
字号:

   
   signal WriteTables : std_logic;
   signal TableData : std_logic_vector(5 downto 0);
   signal Table : std_logic;
   
   signal ZRLing : std_logic;
   signal RFDInt : std_logic;
   signal RFDIntData : std_logic_vector(7 downto 0);   
   
   function Multiplier (Num, Prod : in std_logic_vector) return std_logic_vector;
   
	function Multiplier (Num, Prod : in std_logic_vector) return std_logic_vector is
		variable result : std_logic_vector(19 downto 0) := (others => '0');
	begin --8 bits * 10 bits both unsigned = 18 bits
      result := ('0' & Num(7 downto 0)) * ('0' & Prod);
		return result(17 downto 0);
	end Multiplier;

   function MultiplierQ (Num, Prod : in std_logic_vector) return std_logic_vector;
   
	function MultiplierQ (Num, Prod : in std_logic_vector) return std_logic_vector is
      variable result : std_logic_vector(26 downto 0);
      variable UNum : std_logic_vector(11 downto 0);
	begin --it is like Multiplier but admits bigger operands: Num (10..0) (signed) and Prod (10..0) (unsigned)
      --max result = 1000_0000_0000 * 111_1111_1111 = 1(sign)11_1111_1111_1000_0000_0000 (-2.048 * 2.047 = -4.192.256)
      --UPDATE: now Prod may be of up to 13 bits (12..0), so the result will be 24..0
      if Num(Num'High) = '1' then --negative number?
         UNum := not (Num) + 1; --two's complement to make it positive
      else
         UNum := Num;
      end if;   
      result := ('0' & UNum) * ('0' & Prod);
      if Num(Num'High) = '1' then --negative result
         result := (not result) + 1; --2's Complement
      end if;
      return result(24 downto 0);
	end MultiplierQ;
   
   function Mult_Columns (Line : in std_logic_vector) return std_logic_vector;
   
	function Mult_Columns (Line : in std_logic_vector) return std_logic_vector is
		variable result : std_logic_vector(12 downto 0);
	begin
      --This function is optimized and is designed to multiply times the maximum allowed
      --number of columns in an image. Here, it has been set to 352, in accordance with
      --the buffers (as stated in documentation), but, changing their depth, one can
      --easily change the maximum number of columns, changing also this function and the next.
      
      --Multiply times 352 (101100000) is the same as multiplying times 256 plus multiplying times 64 plus times 32
      --that is, the number shifted left 8 positions + the number shifted 6 + the number shifted 5
      result := "0000000000000" + (Line & "00000000") + (Line & "000000") + (Line & "00000");
		return result; --with Line max=1111, the max. result will be=1010010100000 (12..0)
	end Mult_Columns;

   function Mult_Half_Columns (Line : in std_logic_vector) return std_logic_vector;
   
	function Mult_Half_Columns (Line : in std_logic_vector) return std_logic_vector is
		variable result : std_logic_vector(10 downto 0);
	begin
      --This function is optimized and is designed to multiply times HALF the maximum allowed
      --number of columns in an image. Here, it has been set to 176, in accordance with
      --the buffers (as stated in documentation), but, changing their depth, one can
      --easily change the maximum number of columns, changing also this function and the previous.
      
      --Multiply times 176(10110000) is the same as multiplying times 128 plus multiplying times 32 + times 16
      --that is, the number shifted left 7 positions + the number shifted 5 + the number shifted 4
      result := "00000000000" + (Line & "0000000") + (Line & "00000") + (Line & "0000");
		return result; --with Line max=111, the max. result will be=10011010000 (10..0)
	end Mult_Half_Columns;     


   function GetCategory (Coef : in std_logic_vector) return integer;
      --function fixed to work under ModelSim by Peter Eisemann
      function GetCategory (Coef : in std_logic_vector) return integer is
         --tells us the category of the coefficient (AC and DC) based on a "sign-less" version of itself!
         variable Coeff : std_logic_vector(Coef'High downto 0);
         variable result: integer := 0;
      begin
         if Coef(Coef'High) = '1' then
            Coeff := (not Coef) + 1;
         else
            Coeff := Coef;
         end if;   
         categoryloop:for index in Coeff'range loop
            if Coeff(index) = '1' then
               -- return (index + 1);  Eim
               result := (index +1);
               exit categoryloop when Coeff(index) = '1';
            end if;   
         end loop categoryloop;               
         return result;
   end GetCategory;   

   
--   function GetCategory (Coef : in std_logic_vector) return integer;
--   
--   function GetCategory (Coef : in std_logic_vector) return integer is
--      --tells us the category of the coefficient (AC and DC) based on a "sign-less" version of itself!
--      variable Coeff : std_logic_vector(Coef'High downto 0);
--   begin
--      if Coef(Coef'High) = '1' then
--         Coeff := (not Coef) + 1;
--      else
--        Coeff := Coef;
--      end if;   
--      for index in Coeff'range loop
--         if Coeff(index) = '1' then
--            return (index + 1);
--        end if;   
--      end loop;               
--      return 0;
--   end GetCategory;   
   
   function AppendHuffmanWord (HuffmanWord, Code : in std_logic_vector; Pos : in integer) return std_logic_vector;
   
   function AppendHuffmanWord (HuffmanWord, Code : in std_logic_vector; Pos : in integer) return std_logic_vector is
      variable result : std_logic_vector(22 downto 0);   
   begin
      result := HuffmanWord;
      for i in (Code'length-1) downto 0 loop
        result(Pos-i) := Code(i); --Code(Code'length-1-i); --MSB first!!
        --IMPORTANT: the std_logic_vector is "to", not "downto", that's why the MSB is opposite as usual
      end loop;   
      return result;
   end AppendHuffmanWord;

   --this function is an overload with Code as std_logic (used when it must only append the sign)
   function AppendHuffmanWord (HuffmanWord : in std_logic_vector; Code : in std_logic; Pos : in integer) return std_logic_vector;
   
   function AppendHuffmanWord (HuffmanWord : in std_logic_vector; Code : in std_logic; Pos : in integer) return std_logic_vector is
      variable result : std_logic_vector(22 downto 0);
   begin
      result := HuffmanWord;
      result(Pos) := Code;      
      return result;
   end AppendHuffmanWord;
   
   --this one is to define the MSB of Code in case it is not length-1, so that CodeLength is the new length-1
   function AppendHuffmanWordL (HuffmanWord, Code : in std_logic_vector; CodeLength : in integer; Pos : in integer) return std_logic_vector;
   
   function AppendHuffmanWordL (HuffmanWord, Code : in std_logic_vector; CodeLength : in integer; Pos : in integer) return std_logic_vector is
      variable result : std_logic_vector(22 downto 0);
   begin
      result := HuffmanWord;
      for i in Code'length downto 0 loop
         if i < CodeLength then --this may look redundant but it avoids an "unbound loop" error
            result(Pos-i) := Code(CodeLength-1-i); --careful! here bit 0 is the LSB, X-File
         end if;   
      end loop;   
      return result;
   end AppendHuffmanWordL;   
   
   function To_std_logicvpor11(ZeroRun : in integer) return std_logic_vector;
   
   function To_std_logicvpor11(ZeroRun : in integer) return std_logic_vector is
      --returns the integer times 11 in a std_logic_vector(8 downto 0)
   begin
      case ZeroRun is
         when 0 =>
            return "000000000";
         when 1 =>
            return "000001011";
         when 2 =>
            return "000010110";
         when 3 =>
            return "000100001";
         when 4 =>
            return "000101100";
         when 5 =>
            return "000110111";
         when 6 =>
            return "001000010";
         when 7 =>
            return "001001101";
         when 8 =>
            return "001011000";
         when 9 =>
            return "001100011";
         when 10 =>
            return "001101110";
         when 11 =>
            return "001111001";
         when 12 =>
            return "010000100";
         when 13 =>
            return "010001111";
         when 14 =>
            return "010011010";
         when others => --15 =>
            return "010100101"; --165
      end case;
   end To_std_logicvpor11;
      
   function To_std_logicv(Cat : in integer) return std_logic_vector;
   
   function To_std_logicv(Cat : in integer) return std_logic_vector is
   begin
      case Cat is
         when 0 =>
            return "0000";
         when 1 =>
            return "0001";
         when 2 =>
            return "0010";
         when 3 =>
            return "0011";
         when 4 =>
            return "0100";
         when 5 =>
            return "0101";
         when 6 =>
            return "0110";
         when 7 =>
            return "0111";
         when 8 =>
            return "1000";
         when 9 =>
            return "1001";
         when others => -- 10 => there won't be 11 because we only use it for AC
            return "1010";
      end case;         
   end To_std_logicv;
   
   function GetMagnitude (Coef : in std_logic_vector; Cat : in integer) return std_logic_vector;
   
   function GetMagnitude (Coef : in std_logic_vector; Cat : in integer) return std_logic_vector is
   begin
      case Cat is
         when 0 =>
            return "000000000000"; --we avoid this case with an if because it wouldn't be correct
         when 1 =>
            return "000000000000"; --we avoid this case with an if because it wouldn't be correct
         when 2 =>
            return (Coef - "10");
         when 3 =>
            return (Coef - "100");
         when 4 =>
            return (Coef - "1000");
         when 5 =>
            return (Coef - "10000");
         when 6 =>
            return (Coef - "100000");
         when 7 =>
            return (Coef - "1000000");
         when 8 =>
            return (Coef - "10000000");
         when 9 =>
            return (Coef - "100000000");
         when 10 =>
            return (Coef - "1000000000");
         when others => --11 =>
            return (Coef - "10000000000");
      end case;
   end GetMagnitude;   
   
   function CompressDC(Cat : in integer; LumaBlock : in std_logic) return std_logic_vector;
   
   function CompressDC(Cat : in integer; LumaBlock : in std_logic) return std_logic_vector is
      variable result : std_logic_vector(14 downto 0) := (others => '0');
   begin --the four MSBs of result keep the number of the MSB bit of the data in the LSBs
      if LumaBlock = '1' then --compress with DC Luminance Table
         case Cat is
            when 0 =>
               result := "000100000000000";
            when 1 =>
               result := "001000000000010";

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -